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ABSTRACT 

The explosion of digital technology provides the warrior with the potential to 

exploit the battlespace in ways previously unknown. Unfortunately, this godsend is a 

two-edge sword. Although it promises the military commander greater situational 

awareness, the resulting tidal wave of data impairs his decision-making capacity. More 

data is not needed; enhanced information and knowledge are essential. 

This study built upon the Mean Separator Neural Network (MSNN) signal 

classification tool originally proposed by Duzenli (1998) arid modified it for increased 

robustness. MSNN variants were developed and investigated. One modification 

involved input data preconditioning prior to neural network processing. A second 

modification incorporated projection space variance in a re-defined performance 

parameter and in a newly defined training termination criterion. These alternative MSNN 

architectures were measured against the standard MSNN, a single-layer perceptron, and a 

statistical classifier using data of varying input dimensionality and noise power. 

Classification simulations performed using these techniques measured the accuracy in 

categorizing data objects composed of artificial features and features extracted from 

synthetic communication signals. The projection space modification variant exceeded all 

classifiers under noise-free conditions and performed comparably to the standard MSNN 

in noisy environments. The preconditioned input method produced a poorer response 

under most situations. 
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I.   INTRODUCTION 

BACKGROUND 

In "A Maritime Strategy for the Naval Century," Admiral Jay L. Johnson, Chief 

of Naval Operations, declared, "Just as naval forces command the operational domain of 

the seas, we seek to command cyberspace, by harnessing today's technology to 

revolutionize naval operations" (Johnson, 2000). The explosion of digital technology 

has indeed paved the way for the revolution in military operations currently enjoyed. 

Advances in undersea warfare, the cooperative engagement capability, space and 

terrestrial communications, and computer networks provide the warrior with the potential 

to exploit the battlespace in ways previously unknown. Unfortunately, this godsend is a 

two-edge sword. Although it gives the military commander the promise of attaining 

greater situational awareness, the tidal wave of data severely impairs his decision-making 

capacity. Instead of assisting, the data-rich, information-poor, and knowledge-starved 

warfighter is incapacitated and confused by the abundance of data that inundates him. 

More data is not needed; enhanced information and knowledge are essential. 

B.       THESIS OBJECTIVES 

This proof of concept study continues the development of the Mean Separator 

Neural Network (MSNN) classification tool originally proposed by Duzenli and Fargues 

for identification of underwater signals, modifying it to increase performance robustness 

(Duzenli and Fargues, 1998). As a key component in the warfighter's observe-orient- 

decide-act loop, decision tools like the MSNN signal classifier promote data evolution to 

information. Using The MathWork's MATLAB 5, version 5.3, modification of this 

neural network are developed to improve its classification capabilities. The intent is to 

increase performance robustness and thereby improve data categorization by accounting 

for statistical parameters not considered in the original MSNN formulation. It is entirely 

expected that incorporation of these additional attributes will increase computational 

burden; but the effects of this extra load are expected to be unremarkable and therefore 

will not be rigorously monitored. The implementation of the proposed MSNN schemes 



will be measured against two unrelated techniques used as benchmarks: (1) a quadratic 

classifier modeled purely on the statistical characteristics of the input data and (2) a 

single layer perceptron neural network. The accuracy of each classification method will 

be verified by its precision in properly typing artificial feature vectors and features 

extracted from simulated signal modulations. If proved successful, the altered MSNN 

method offers a technique that will assist the warfighter in attaining greater battlespace 

and infosphere acuity. 

C.       THESIS ORGANIZATION 

Following this introduction, Chapter II presents artificial neural networks. 

Chapter HI delves into a principal application of neural network: pattern recognition and 

classification. The basis of the quadratic statistical classifier, perceptron neural network, 

and MSNN schemes are introduced and examined. In Chapter IV, these classification 

techniques are tested through trial simulations. Analysis of the results provides 

rudimentary insight into the feasibility of each classifier. Next, Chapter V assesses the 

classification techniques considered by categorizing synthetic communication signals. 

Feature extraction is briefly discussed to emphasize this aspect of signal classification. 

Chapter VI summarizes the results of this study and recommends avenues for continued 

work. 

Appendix A details an important proof of perceptron neural networks: the Fixed- 

Increment Convergence Theorem. Appendix B contains the empirical results of the 

Chapters IV and V investigations. Appendix C documents the MATLAB code written to 

conduct the experimental portions of this study. 



II.  NEURAL NETWORKS 

The military commander needs advanced applications to complement the 

advancing appliances that have become commonplace in today's society. Indeed, 

Moravec claims that by the year 2030, desktop computers will have the processing power 

equal to the human brain (Moravec, 1999). But such capabilities are useless unless they 

simplify the mundane tasks dealt with on a routine basis and assist in times of crisis. For 

the warfighter, this amounts to creating decision aids that not only ingest data but also 

conveys knowledge. As a stepping stone to attaining such knowledge management 

capabilities, tools that communicate information to the operator, and not just delivers 

data, are required. 

The Mean Separator Neural Network at the focus of this thesis is designed to 

impart information. Used as a signal classifier, this network converts raw data to useful 

information about the target source. But to understand how this system operates, a basic 

understanding of neural networks may prove useful. This chapter provides this 

fundamental insight into neural networks, starting with the biological inspiration for such 

devices: the brain. 

A.       BIOLOGICAL INSPIRATION 

As the name implies, neural networks are structured after the workings of the 

brain. The question to ask then becomes why and what advantage does this provide over 

conventional computational devices? Indeed, studies have shown that neurons in the 

human brain are much slower than silicon logic gates. The computers of 1991, for 

example, were five to six orders of magnitude faster than the brain. Single events that 

take nanoseconds in computers to process, require milliseconds in the cerebral cortex. 

Yet, it is common knowledge that the human brain is more powerful than even today's 

computers. For instance, perceptual recognition takes 100-200 milliseconds for people, 

but requires days for computers. In accomplishing such tasks, the brain is also much 

more energy efficient. While computers consume 10"6 Joules/sec per operation, the 

energy expenditure of the brain is only 10"16 Joules/sec per operation.   If computers 



process individual instructions more quickly than the brain, how does the biological 

neural network operate more efficiently? 

The brain achieves such performance levels by utilizing a highly complex, non- 

linear network of parallel processing units. Nearly a quadrillion (1015) connections link 

the one hundred billion processing elements (called neurons) that make up the brain. 

Shown in Figure II-1, these neurons are composed of three principal components. The 

dendrites, the axon, and the cell body. The dendrites and axons are the communication 

lines that convey electro-chemical messages between adjacent neurons. Dendrites are the 

receptive appendages; axons, the transmission appendages. The connections formed by 

these components are the brain's synaptic links. Between the dendrites and axon, 

information is processed by the cell body. The arrangement of the neurons, the strength 

of the synaptic links, and the summing and thresholding of the cell body determines the 

processing power of the biological neural network. (Haykin, 1994, pp. 1-4), (Hagan, et 

al, 1996, pp. 1-8 - 1-9) 

Dendrite 

Figure II-l. Biological Neuron. From Ref. [Hagan, et al, 1996, p. 1-8] 



B.       COMPUTER IMITATION 

Because of its massively parallel and complex structure, the brain operates more 

efficiently than conventional computers. It is this capability that artificial neural 

networks strive to replicate. Like the anatomical prototype, artificial neural networks use 

experiential knowledge to understand and interact with the environment. That is, 

artificial neural networks learn. The artificial network process input data to approximate 

a situation and stores this learned information as "synaptic" weights. Hence, an artificial 

processing element can be modeled after the biological neuron, as shown in Figure II-2. 

In this diagram, the weighted input link, w, replace the dendrites and synapses; a linear 

summer and a non-linear activation function, q>, the cell body; and the output link, a, the 

axon. As a result, the artificial neuron output, defined in Figure II-2 as 

a = cp(wT .p + b), (2.1) 

illustrates that the non-linear activation function, like the cell body, determines the 

neuron's characteristic ability to solve specific problems. 

Using this basic building block, parallel-processing networks can be constructed. 

Feeding the same input to several neurons results in a network layer of parallel 

|   "Dendrite" "Cell Body" "Axon" 

->  a 

lxl 

Summer               Function 

p i t j   w w *K1J u. *KzJ 
lxR 

b 
k 

Input 

1 3 

Art 

a 

ificial Neuron 

Figure II-2. Artificial Neuron. After Ref. [Hagan, et al, 1996, p. 4-41 



processing elements. The data input to these processing element could be a vector or 

matrix of information originating from an external sensor or an internal storage device. 

But, when this feed comes from an upstream neural layer, or alternatively, when the layer 

output supplies a subsequent downstream network layer, complex network structures are 

assembled. Thus, even though current neural network architectures fall short of the 

physiological capabilities, artificial neural networks begin to resemble the human brain. 

With this model of an artificial neuron, a single-layer Mean Separator Neural 

Network will be built and examined. Further details on neural networks can be obtained 

by consulting listed references (Dayhoff, 1990), (Fausett, 1994), (Hagan, et al, 1996), 

(Haykin, 1994). 



III. CLASSIFICATION 

Chapter II briefly discussed neural network fundamentals. In Chapter HI, a 

specific application of this computational tool will be considered. 

Adept at solving problems, neural networks are being used in a growing number 

of diverse fields. In addition to applications in engineering, mathematics, and the 

physical sciences, they have proved useful in medicine, banking and finance, and 

literature. Table IH-1 lists a few of the fields impacted by neural network advancements. 

INDUSTRY APPLICATION 

Aerospace 
Flight Path Simulation 

Aircraft Control 
Component Simulation and Fault Detectors 

Automotive Automatic Guidance Systems 

Banking 
Document Readers 

Credit Application Evaluations 

Defense 
New Sensors 

Target Tracking and Weapon Steering 
Object Discrimination 

Electronics 
IC Chip Layout and Process Control 

Failure Analysis 
Code Sequence Prediction 

Entertainment 
Animation 

Special Effects 

Finance and Securities 
Market Analysis and Forecasting 

Real Estate Appraisal 
Credit Line Use Analysis 

Insurance Policy Application Evaluation 

Medical 
EEG and ECG Analysis 

Breast Cancer Cell Analysis 
Hospital Quality Improvement 

Oil and Gas Exploration 

Robotics 
Manipulator Controllers 

Vision Systems 

Speech 
Speech Recognition and Compression 

Text to Speech Synthesis 

Telecommunications 
Image and Data Compression 

Real-Time Language Translator 
Automated Information Services 

Table III-l. Neural Network Applications. After Ref. [Hagan, et al, 1996, pp. 1-5 -1-6]. 



Common among these applications is a reliance on the neural network's natural 

ability to recognize patterns. As a result, neural networks are commonly tasked with 

separating data into a finite number of classes, i.e., classifying. Classification is the task 

of categorizing observation into distinct groups based on characteristics of the class. For 

example, when separating fruit, shape, weight, size, color, texture, or smell could be used 

to differentiate oranges from apples or bananas. 

The attributes used to separate the distinct classes are called features. These 

features, arranged as vectors, comprise the problem's input or data space. Although it 

may seem that the likelihood of correct classification increases with higher feature space 

dimensionality, this is not necessarily the case. For instance, consider a person wishing 

to purchase an automobile. He may convey to a dealer in meticulous detail the 

specifications he desired (e.g., exterior color, type of interior, engine horsepower, gas 

mileage, trunk capacity, wheel base length, audio components, etc.) so as to identify a 

particular vehicle. Imagine the dealer's exasperation as the customer goes through this 

litany. The main disadvantages of the precision characterized in this example are 

1. irrelevant and/or noisy features may be taken into account, 

2. a requirement for a large sample to assess the robustness of the features used. 

In addition, relying on such a large feature space increases the computational load and, 

consequently, processing time of the problem. (Duzenli and Fargues, 1998) 

But alternatively, consider the overzealous salesman who bombards a customer 

with countless questions without receiving any satisfactory answers in return. Often, the 

particular pieces of information needed may not be obtainable. Solving the classification 

dilemma thereby becomes a problem of identifying an algorithm that will type 

observations to the correct class when only a reduced feature space, either by design or as 

dictated by the situation, is available. 

Feature determination and extraction are vital aspects of the classification 

problem; however, the main emphasis of this thesis will be algorithm identification and 

testing. As will be seen, the method by which neural networks classify is dependent on 

the algorithm used. But, by no means are neural networks the only tool used to separate 



data into proper classes. In a paper presented at the 1999 Military Communication 

International Symposium, Sills identifies methods studied to classify modulated signals. 

These efforts focused on frequency-domain parameters (Ghani and Lamontagne, 1993), 

(Lallo, 1999); statistical attributes of various signal parameters (Sills, 1999); and higher 

order statistics of cyclostationary signals (Reichert, 1992). With regards to neural 

networks, these parameters could constitute the features of interest. 

Specifically, this thesis continues the development of the Mean Separator Neural 

Network (MSNN) originally proposed by Duzenli and Fargues for classifying underwater 

signals (Duzenli and Fargues, 1998). To gauge its performance, the MSNN classification 

capability was measured against a single-layer perceptron neural network - the least 

complex neural network used for classification - and a classifier based solely on the 

statistical characteristics of a particular class. This statistical classifier is considered next. 

A.       STATISTICAL CLASSIFIER 

A statistical classifier served as one benchmark for the results obtained in this 

study. Statistical classifiers model the problem space based on data attributes (such as 

mean, covariance, or any higher order moment). Consequently, they may also be known 

as parametric classifiers. Non-parametric classifiers, on the other hand, approximate the 

problem based on actual empirical data. Neural networks are non-parametric classifiers. 

For this study, the statistical classifier used was the quadratic classifier derived 

from the Bayes likelihood ratio, which has been shown to minimize error probability 

(Fukunaga, 1990, p. 124). The formulation of the decision rule governing the quadratic 

classification algorithm follows. 

Consider a space composed of m classes, namely ii\, nz, %, . . . n^. At some 

time, an observation x belonging to class 7ti occurs. The decision rule will classify x to 

, 7i* so as to minimize error; that is classify x to 7t*sjti. Setting the loss function for this 

situation as 

^K)={° 'lrj. (3-D 



implies that no loss arises when correct classification occurs, while unit loss results from 

improper classification. From Equation 3.1, the decision rule is given by 

7I*(x)=7lj    if   P(7Ci | X) > P(7Cj | x),   Vj,   j*i. (3.2) 

Using Bayes' Rule to rewrite the conditional a posteriori probabilities in terms of the 

density function p(x|7rk) and the a priori probabilities Pk leads to 

7t*(x) = 7ii   if   pCxfTtj)^ >p(x|7tj)Pj,  Vj,  j*i. (3.3) 

For a two class (i =1, j=2) multi-variant normal system, p(x|7tk) can be expressed as 

P(xl^) = |2^[1/2exp[-i(x-nk)
Ti:-1(x-tik)l (3.4) 

with Z the class covariance matrix, |x the class mean vector, and x the observation. 

Substituting Equation 3.4 into the inequality of Equation 3.3 yields 

**00 = *i   if   |~ I ,i/2exp[-i(x-^i)Tsr1(x-^)]P1 (3.5) 

> \2TZL |^eXpt~^(X "»l2)T^1<x-|i2)]p2. 

Since both sides of the inequality are positive, taking the natural logarithm of each term 

in Equation 3.5 results in 

ln]^-(x-fi1)
T2:i-1(x-fi1) + 21nP1>ln|^-T-(x-fi2)

T2:;1(x-fi2) + 21nP2.    (3.6) 
ril F2I 

Alternatively, Equation 3.6 can be expressed as 

ln|i:2| + (x-fi2)
T2:2

1(x-n2)-21nP2>ln|S1| + (x-fi1)
T2:i-1(x-n1)-21nP1.     (3.7) 

When Equations 3.6 or 3.7 are true, observation x is categorized as belonging to class 7ti. 

Considering the original problem of m classes, the decision criteria is stated here 

as Equation 3.8: 

d; (x) = ln|Ei I + (x - |i. )T E:1 (x - p.) - 21nP;. (3.8) 
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Therefore, using the mean vector and covariance matrix of each class, m decision values 

can be calculated for the observation x. The correct classification of x is the class that 

gives the lowest value for d. (Brunzell and Eriksson, 1999) 

Unfortunately, Equation 3.8 requires that the data set be normally distributed. 

When this is the case, the quadratic classifier performs remarkably well. 

B.       PERCEPTRON 

1.        Principles of Operation 

Inspired by the assertion that "in spite of its apparent simplicity, the (single layer 

perceptron) trained by adaptive optimization techniques is in fact a very rich family of 

linear classifiers," the second benchmark used to gauge the MSNN performance was a 

perceptron neural network (Raudys, 1996). Developed in the 1950s by Frank Rosenblatt, 

perceptrons are designed to linearly separate adjacent class groups (Figure HI-1). Each 

boundary in Figure IQ-1 is determined using a separate perceptron component, shown in 

Figure m-2. In this figure, the hard limit layer represents the actual processing element. 

The input block, comprised of R-dimensional vectors, p, corresponds to the training or 

observation data.  For R greater than two, the decision boundary shown in Figure Ht-l 

class nA ■'■'■' -J 

/( 

g& 

■ ■ -w ^»      ■     ■     ■■ "gaga»* 

/\     \       class n2 

Jf 

class TC3 

Figure III-l. Linearly Separable Classes. 
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lxl n cp a 
lxl 

b 
lxl 

Input Hard Limit Layer 

Figure III-2. Single Perceptron Processing Element. After Ref. [Hagan, 
et al, 1996, p. 4-4] 

becomes a hyperplane. The weight row vector, w, and bias scalar, b, transform the input 

observations into a scalar output n, which is then non-linearly mapped by the activation 

function, (p. The perceptron output therefore equates to 

a = ^(w.p + b). (3.9) 

The activation function <p normally used for the perceptron is the hard limit, or hardlim. 

Figure IH-3 illustrates the characteristic of this transformation. 

As shown in Figure ni-3, the only possible outputs of a single perceptron neural 

network are 0 and 1. Consequently, the neural network can only separate two classes; the 

decision boundary, for example, isolating class 7ti (network output 0) from class 7t2 

(network output 1). 

This decision boundary is specified by the hardlim argument and is represented 

mathematically by the linear equation 

w.p + b = 0. (3.10) 
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Figure III-3. hardlim Activation Function. 

If the inner product of the input vector p and the weight vector w is greater than -b, the 

hardlim non-linear transformation will map to 1; if the inner product is less than -b, 

hardlim will map to 0. This provides the distinction needed for classifying observations. 

P w '-—                                     hardlim 
Rxti 

w 

HxR T A       n  ^f (p\    p   a 

i 
J       HXTl      V^ /              HXTl 

> 

d Limit Layer Input 
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Figure III-4. Multiple Perceptron Neural Network. After Ref. [Hagan, 
et al, 1996, p. 4-4] 
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Since each perceptron can distinguish only two different classes, classification 

problems involving more than two choices require a multiple-neuron architecture, n 

(rounded up to the next integer) perceptrons are needed to classify 2^ different classes. 

The three-class case shown in Figure III-l, for instance, requires two processing 

elements. Using matrix-vector notation, Figure ELI-2 can be modified to illustrate the 

general case of a multi-perceptron architecture and multiple trials, r\ (Figure III-4). 

With \x processing elements, the decision rule for multi-neuron networks must 

consider a ^-dimensional output vector of Is and Os. Each unique combination of 1 and 0 

corresponds to a particular class. The typing of an input observation is determined by 

matching the neuro-classifier output to one of these different sequences. Unfortunately, 

when the number of possible bit strings exceeds the number of classes, the input data may 

type to a non-class sequence. This frequently occurred during the simulations discussed 

in Chapter IV and V. 

In summary, as an observation is processed through a trained perceptron network, 

the classifier output will identify the appropriate class type for both single and multiple 

neuron cases. Training the neuro-classifier to determine the proper output is discussed 

next. 

2. Training 

Prior to implementing the perceptron neuro-classifier, the network must be trained 

to recognize different classes. This training is accomplished through a supervised 

learning approach in which sets of input data and corresponding target output are 

presented to the neural network. The network batch processes the input observations for 

comparison of the resulting output to the desired output. A difference error between 

these two output values is calculated and used to update the perceptron parameters - the 

network's weight vector and bias. Since the network can only output 0 or 1, the error 

generated is limited to either 0 or ±1 (or, for multi-perceptron networks, a vector of Os 

and ±ls). If the error is zero, no weight or bias update occurs. 

When the error is non-zero, the weight vector is updated by adding a correcting 

term (the product of the error and input data) to the weight vector. For the bias, the error 
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is simply added to the bias. Mathematically, Equation 3.11 and 3.12 compactly show this 

perceptron learning rule for the general case of multiple neuron networks as 

wnew =w0ld+e-pT = wOId + (t-a)-pT (3.11) 
bnew=bo.«f+e = bo1d + (t_a) (3_12) 

These operations improve classification performance by adjusting the slope and 

position of the perceptron decision boundary towards the input data point. In doing so, 

the linear separator incrementally rotates and translates to place the input data on the 

correct side of the decision boundary. 

3.        Training Termination 

An iterative process, perceptron training involves cycling through the input/target 

output pairs - each iteration through the entire data set constituting an epoch - until 

network convergence. Here, convergence refers to reaching and maintaining a steady 

state error condition. For linearly separable classes, perceptron training results in the best 

case, zero-error solution within a finite number of epochs (see Appendix A). 

Unfortunately, linearly separable problems are an ideal classification case. 

Convergence, in general, does not imply a zero-error final state as the nature of the 

classification problem may dictate that the steady state solution includes a constant error 

level. Or, as another possible outcome, the neural network may not converge at all, but 

instead oscillate or erratically deviate about a fixed value. And finally, even when the 

network converges, there is no guarantee that this constant state will be attained within a 

reasonable time period. For these less than optimal cases, termination parameters signal 

when to stop network training. Typically these parameters are satisfied by reaching a 

maximum number of epochs or a maximum acceptable performance level. 

The simplest approach to end network training would be to reach a prescribed 

maximum number of training cycles. When properly chosen, this epoch limit can assure 

attaining an adequate solution. Unfortunately when specified too low, unsatisfactory 

network output may result since the network would not have had sufficient time to 

achieve an acceptable final weight and bias.   Conversely, fixing the maximum epoch 
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setpoint too high would increase the likelihood of adequate training but at the cost of an 

excessively long training period. 

But, determining the number of epochs required to obtain an optimal solution 

hinges on specifying what is meant by "optimal" solution. To define "optimal" in this 

sense requires having a priori information of the input data distribution. For a linearly 

separable classification problem, an optimal solution would lead to zero-error. For other 

situations, a predetermined metric specifying an acceptable error limit, such as a 

maximum mean squared error or sum of squared errors, could be used to end network 

training. Regardless of the termination parameter used, prior knowledge of the input data 

allows better approximation of the maximum epoch limit. Combining this maximum 

number of iterations with an appropriately set performance measure provides for 

adequate control of the training length. 

4.        Limitations 

Section m.B has dealt with using the perceptron neural network for classification 

purposes. Through a simple learning rule (Equations 3.11 and 3.12), perceptions can 

classify to zero-error solutions in a finite amount of time. Unfortunately, as linear 

classifiers, perceptrons accomplish this only for linearly separable cases. As a result, 

perceptron networks rarely converge to zero-error solutions, thus requiring the 

implementation of termination parameters to limit network training. 

This, however, is not the principle disadvantage of the perceptron network. 

Recalling that the perceptron uses the hardlim transform, the network's piecewise 

continuous, hence non-differentiable, activation function does not allow application of 

mathematical optimization techniques. Solving classification problems, therefore, 

becomes tedious as the iterative process amounts to "hunting-and-pecking" for the best fit 

(i.e., smallest error) solution. This trial-and-error method limits perceptron efficacy. 

Yet despite these inadequacies, improvements in perceptron efficiency are 

possible with multiple layer network design. The next section, however, will show that 

by design the MSNN is a single layer neural network. Because of the focus on this 

architecture, this investigation only considered single layer perceptron networks. 
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C.       MEAN SEPARATOR 

As previously mentioned, classification requires (1) the extraction and reduction 

of features that characterize the distinct categories and (2) the application of an analytical 

tool that evaluates and separates observations. This thesis, concerned principally with the 

latter requirement, is focused on the Mean Separator Neural Network (MSNN) originally 

presented by Duzenli and Fargues (1998). In addition, three variations to this standard 

mean separator algorithm were investigated to determine if enhanced system performance 

and robustness could be achieved. 

1.        Principles of Operations 

The MSNN differentiates two classes by evaluating one-dimensional projections 

of each data distribution onto varying axes to ascertain which transformation direction 

maximizes the spread between the class mean values; hence the term "mean separator." 

Figure m-5 illustrates this concept in two-dimensional space by showing two possible 

mean separator projection axes. The ellipses represent two classes and the shading within 

each conveys the data distribution; the darker regions being more densely populated than 

Figure III-5. MSNN Projection.  Projection lines and data distribution. 
Due to greater mean separation, (a) is the preferred 
projection. 
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the lighter. The orthogonal axes correspond to two elements of the feature space. The 

slanted solid lines indicate the projection axes and the slanted dashed lines are the 

projection of the class means onto these axes. 

Of the two projections shown in Figure m-5, case (a) with the larger mean 

separation depicts the preferred selection. Class typing of future observations would then 

entail projection of the data point onto this axis and association to the nearest class mean. 

As shown on Figure m-6, the observation plotted would type to the class Tii. 

Figure III-6. MSNN Class Typing. 

Multiple projection axes are needed to distinguish all pairwise combinations when 

considering more than two categories. Using the MSNN, Duzenli investigated two 

methods to identify observations as one of more than two classes. One algorithm 

determined all possible pairs of classes. For the general case of m classes, namely 7ii, %2, 

7t3,... 7tm, k possible combination exist; k determined by 

k = 
' m> 

v2, 

m! m(m-l) 
2!(m-2)! 2 

Each of the k projections corresponds to a separate processing element in the MSNN 

(3.13) 
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An alternate classification method suggested by Duzenli separates the data space 

into class i and non-class i observations. Segmenting the data as such reduces the 

required number of processing elements to m, the class number. This second alternative 

involves a lower computational requirement due to the significantly fewer neurons and, 

therefore, would appear to be the better choice. Yet, prudence is cautioned when using 

this latter alternative since assembling the data into class/non-class clusters may alter 

statistical parameters so as to preclude accurate data typing. Because of this, the strict 

pairwise routine was followed, irrespective of the higher number of neurons needed. 

(Duzenli, 1998) 

The mechanics of MSNN operations involves three distinct phases: training, 

typing, and decision-making. Explaining these stages, however, requires understanding 

the network's basic building block: the MSNN processing element, or neuron. This will 

be considered next. 

2. Processing Element 

Shown as Figure m-7, schematically the MSNN processing element differs little 

from the neuron used in perceptron neural networks. Aside from the inclusion of a scalar 

Figure III-7. MSNN Processing Element 
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multiplier and adder that serve to increase the neuron's dynamic range by first amplifying 

and then shifting the activation function output, the principle difference between the 

perceptron and mean separator processing elements is choice of activation function. 

Recall that the perceptron uses a hard limit function that maps the neural output to either 

0 or 1. Since this transform is not analytic, a principle drawback of the perceptron was 

that numerical techniques could not be used to optimize a solution. 

In contrast, the MSNN does use a differentiable activation function, 4>: the 

logarithmic-sigmoid, or logsig, function. The characteristic and closed form equation for 

the logsig function (Figure III-8) define a smooth curve that gradually approaches 1 as its 

argument increases to positive infinity; and 0, as the argument decreases to negative 

infinity. Hence, differential optimization methods may be applied to train and improve 

neuron performance. This network training will be addressed in more detail shortly. 

Figure m-7 shows that the MSNN output equals 

MSNN neuron output = 20 • logsig(w. p + b) -10. (3.14) 

As mentioned before, Equation 3.14 incorporates two scalar terms to increase network 

classification sensitivity.   Arbitrarily chosen, the gain value of 20 amplifies the logsig 

1.2 
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Figure III-8. logsig Activation Function. 
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output while the threshold term sets the MSNN neuron output range at -10 to 10. 

Implementing this MSNN neural output results in a performance measure and training 

method that controls weight and bias updates. 

3.        Training 

Equation 3.14 defines the MSNN non-linear transformation. But before this 

equation can be used for classification, network training is required. This training 

amounts to determining the projection parameters - that is, the weight vector, w, and the 

bias scalar, b - that maximizes class separation. For the perceptron, these parameters 

simply defined class boundary lines and were found iteratively by cycling through input 

data/target output pairs until a specific performance parameter was satisfied. For the 

MSNN, these weight and bias parameters identify the projection axis upon which 

maximal mean separation occurs. Consecutive epochs also refine the MSNN parameters, 

but since the logsig activation function is analytic, optimization techniques can be used. 

This requires identifying a MSNN performance function. 

a.        Mean-Difference Performance Function 

Duzenli defined a mean-difference (MDj projection index for the MSNN. 

This thesis defines an analogous form (Equation 3.15) of his mean-difference equation 

as: 

MD =-[E{ (20 • <D(w. pi + b) -10) - (20 • <D(w. p2 + b) -10) }]2 

= -[20-E{0>(w.pi + b)-a>(w.p2 + b)}]2, (3.15) 

with E being the expectation operator and 3>, the logsig activation function (Duzenli, 

1998). From this equation, the origin of the term "mean-difference" becomes clear. The 

equation maps observations belonging to two separate classes, denoted by the vectors pi 

and p2, using the system's performance parameters w and b. Applying the non-linear 

logsig function to this linear transformation projects the pi and p2 data spaces onto a one- 

dimensional projection axis. Taking the difference of the mean of these projections 

yields the mean-difference. 

With regards to Equation 3.15, squaring the mean-difference emphasizes 

the magnitude, and not the sign, of the difference; while the leading negative sign ensures 
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upward concavity for function minimization. Recall, from Equation 3.14 that the purpose 

of the scalar 20 was to increase sensitivity during class typing. Because of this gain, 

Equation 3.15 gives a mean-difference range of zero (when both data distributions map to 

0 or both map to 1) to -400 (when one distribution maps to 1 and the other to 0). The 

former value correspond to the worse case situation; the latter, to the optimal state. 

The MSNN employs supervised, batch processing of input data to train the 

network. Like a perceptron that undergoes explicit supervised learning in which specific 

target outputs must be associated with the input data, MSNN learning requires that the 

training data be assigned to the correct class. As before, batch training refers to parallel 

processing of the input observations, resulting in a single update per epoch; vice 

sequential processing in which the system's weights and bias are incrementally changed 

after each data input. The MSNN training process is schematically shown on Figure m-9 

for a three-class classification case. 

■j WEIGHT/ 

BIAS 

I   UPDATE 

Input 

Figure III-9. 3-Class MSNN: Training. 

Figure m-9 incorporates three MSNN processing elements into a single 

layer network. The training process described above prepares the neuro-classifier to 

recognize classes pu p2, and p3.   Unlike the other phases of MSNN implementation, 
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during the training stage each neuron simultaneously processes two classes of data, as 

required by Equation 3.15. The thicker line in the network layer emphasizes this parallel 

processing. For each neuron, these calculations yield MD values at the input to the 

"weight/bias update" block. If this value falls below a threshold (empirically determined 

to be ninety-percent of the optimal value, -360), the neuron's performance parameters 

require no further training. When the MD value exceeds -360, weight and bias updates, 

dw and db, are determined using a steepest descent algorithm. 

b.        Weight and Bias Update Equations 

When the current projection index is greater than -360, the MSNN 

parameters update according to equations of the form 

w[k + l]=w[k] + a[k]-f1[k] (3.16) 

b[k + l] = b[k] + a[k]-f2[k], (3.17) 

where a[k]-fi[k] and a[k]-f2[k] adjust the weight and bias values to improve MD. a[k], a 

variable learning rate parameter, dictates the incremental step-size towards this upgraded 

projection index. The analytical meaning of fi[k] and f2[k] are explained next. 

For convenience, Equation 3.16 and 3.17 are compacted into a single 

vector equation: 

z[k + l] = z[k] + a[k]f[k]. (3.18) 

Reiterating that Equation 3.15 drives the weight and bias update, a Taylor's first-order 

approximation of the mean-difference projection index about a known weight vector and 

bias yields 

MD(z[k +1]) = MD(z[k] + Az[k]) = MD(z[k]) + VMD(z[k]) • Az[k],    (3.19) 

with the second term combining the gradient of the performance measure and the change 

in z.  Seeking a trajectory to the optimal MD of -400 and recognizing that this value is 

also the function's lowest possible value requires that MD(z[k+l]) < MD(z[k]).   This 

implies 

VMD(z[k]) • Az[k] < 0. (3.20) 
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Using Equation 3.18 to define Az[k] and substituting this into Equation 3.20 results in 

a[k]VMD(z[k]).f[k]<0, (3.21) 

with a[k] positive by convention. Since Equation 3.21 is most negative when f[k] points 

in a direction opposite that of the gradient, Equation 3.18 becomes 

z[k +1] = z[k] - a[k] - VMD(z[k]). (3.22) 

Similarly, Equations 3.16 and 3.17 become 

w[k +1] = w[k] - a[k]^ffi (3.23) 
dw[k] 

b[k + l] = b[k]-a[kÄl, (3.24) 
db[k] 

where the appropriate partial derivative replaces the gradient term.  With respect to the 

weight vector and bias, the partial derivatives of Equation 3.15 are determined to be 

ÖMD 
—— = -800[E{<D(w.pi + b)-<D(w.p2 + b)}] (3.25) 

*[E{<£'(w.pi + b)pi-<i>'(w.p2 + b)p2}] 

—— = -800[E{0>(w.pi + b)-<D(w.p2 + b)}] (3.26) 

*[E{0>'(w.pi + b)-<D'(w.p2 + b)}], 

with O, the logsig activation function, and its derivative shown below: 

1 1 
O = logsig(n) = —        <£'= logsig'(n) = 

\2 ' l + exp(-n) exp(n)(l + exp(-n))2 

Equations 3.23 and 3.24 comprise the MSNN learning rule. The update terms in these 

equations correspond to the dw and db terms shown in Figure m-9 that feed back through 

the neural network. (Hagan, et al, 1996, pp. 9-2 - 9-3) 

As an added feature to improve network training, the MSNN step-size, or 

learning rate, also updates after each iteration.  Patterned after the variable learning rate 
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rules for backpropagation neural networks, the MSNN variable learning rate rules are 

summarized below (Hagan, et al, 1996, pp. 12-12): 

1. If after one epoch the mean-difference parameter increases by more than four- 
percent (empirically determined), then the trajectory is diverging from the 
desired state. Consequently, the new weight and bias updates are discarded 
and the learning rate is halved to minimize movement away from the optimal 
MD value. 

2. If after one epoch the mean-difference parameter increases by less than four- 
percent, then the trajectory is still diverging from the desired MD value. This 
movement, however, is tolerable since the change in MD from the previous 
value is small. For this case, the learning rate is unchanged and the new 
weight and bias updates are accepted. 

3. If after one epoch the mean-difference parameter decreases, then the trajectory 
is approaching the optimal value. The new weight and bias updates are 
accepted and the learning rate is doubled to increase movement in this 
direction. 

By doing this, the weight and bias update, trajectory are controlled as needed to quickly 

approach optimal projection index values or to minimize divergence from an acceptable 

solution. 

c. Training Termination 

This training scheme updates the MSNN weight vectors and bias values 

until termination conditions are satisfied; either, the updated MD value is less than the 

empirically established ninety-percent of optimal (< -360) or a maximum epoch limit is 

reached. With the network now trained, MSNN classification next involves 

parameterizing each class to establish the decision rule for separating observations. But, 

before discussing these subsequent stages, one final point regarding network training 

must be emphasized. From Figure ni-8 (plot of the logsig activation function) we recall 

that the MSNN activation function output asymptotically approaches 0 or 1. The desired 

solution for a classification problem occurs when one class maps to 0 and the other to 1, 

as dictated by the argument of the logsig function. Unfortunately, when the initial weight 

and bias values, instead of the class observation, dominate the output of the linear 

transform used as the logsig argument, the network can become saturated after very little 
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training. In this saturated state, no further training will occur since the gradient value in 

these regions is zero. In short, the network has stalled and training will terminate based 

on the low learning rate (threshold set at 10"4). To prevent this, the network weights and 

bias are initialized to low magnitude values and the input features are normalized. 

Hence, network training begins in the sloped region of the logsig output to take 

advantage of this dynamic region and improve the likelihood of satisfactory training. 

If training terminates on low learning rate or high epoch cycles and not on 

acceptable MD, the network is retrained after first discarding and re-initializing the 

weights and biases. If training ends due to a satisfactory MD level having been reached, 

the weight and bias values are stored. The MSNN is now ready to proceed to the next 

phase of determining specific class identifiers. 

4.        Class Typing and Decision-Making 

Tuned to distinguish the different classes, the MSNN must next determine a 

distinct identifier for each class. Considering a three-class classification problem as 

before, Figure El-10 diagrams how this is accomplished. 

Recall, Figure IQ-9 showed that the neuron at the top of the diagram (neuron 1) 

had been trained to separate classes pi and p2.  The training data for these two classes 

Pi 
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P3 
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Figure 111-10. 3-CIass MSNN: Typing. 
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will again be processed by this neuron. If trained optimally, the processing element will 

map one class of data to 10 and the other to -10. At the very least, it is hoped the neuron 

maps one class to a positive value and the other to a negative number. But, should both 

classes map to the same value after unsatisfactory neuron training, this unfavorable event 

is not insurmountable. Since the data point mappings from all neurons comprise the class 

identifier, even if one processing element is poorly trained, the other neurons may 

potentially provide for unique class identifiers. 

For now, however, assume a pi data point generates 10, while a p2 observation 

turns out -10. A class p3 data point will also be cycled through neuron 1, resulting in 

another -10, for instance. Consequently, after taking one observation from each class and 

mapping them by neuron 1, the following distinction shown as Table III-2 is realized: 

CLASS px CLASS p2 CLASS p3 

NEURON 1 I 1,2 
i 

10 -10 -10 

Table III-2. Hypothetical Class pi, p2, and p3 Output 
from Trained Neuron 1 (Class pi vs Class p2). 

In Table ni-2, the second column indicates the two classes used to train the neuron. 

Using the same three training data points, output from the remaining two neurons 

are also determined. Completing Table ni-2 with these remaining data points shows the 

unique identity of each class type. 

CLASS pi CLASS p2 CLASS p3 

NEURON1 1,2 10 -10 -10 

NEURON2 1,3 10 -10 -10 

NEURON3 2,3 10 -10 10 

Table III-2a. Hypothetical Class pi, p2, and p3 Output 
from Trained 3-Class Neural Network. 
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Notice that if neuron 1 had mapped the data points from all classes to 10, for this example 

the three classes would still have unique identifiers. In general, however, this is not true. 

Neurons 2 and 3 could have been trained such the resulting specifiers did not uniquely 

identify each class type. 

When determining class specifiers, the network does not process only one point 

from each class through the neurons. To obtain a representative template for each class, 

the trained neural network processes all training data. This produces a neuron map of all 

data points as shown as Figure HI-ll. Calculating the average output from each neuron 

for each class determines the three class specific identifiers. These identifiers, n, r2, and 

r3 in the three-class case are then saved for later use in classifying observations. 

Up to this point the MSNN has processed only training data. Once the network 

has learned the characteristics of the input data and can distinguish the separate classes, it 

can be used to classify new observations.   Shown schematically on Figure HI-12, this 

pi P2 p3 
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a a. 

I 
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 ——. J 

z 
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n _10 ^ ■ ■  ^^^^^^^^mmm^^mm^mmmimmm 

Figure III-ll. Neuron Maps for Hypothetical 3-Class MSNN Typing. Each 
plot depicts how a trained neuron maps class data. Read 
vertically, the plots identifies the unique class type specifiers 
produced by the MSNN. 
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Figure 111-12. 3-Class MSNN: Decision-Making. 

process comprises the final stage in classifying observations with the MSNN:  decision- 

making. 

The decision phase begins when a sensor or data storage device provides the 

tuned MSNN with an observation. Needless to say, if the training data was conditioned 

prior to being processed by the MSNN, so must this new observation. According to 

Equation 3.14, the MSNN maps this observation producing an output from each neuron. 

This observation typing, o, is compared to the stored class specifiers, r,-, via an Euclidean 

distance measurement of the general form 

d, = (r, - oOT • (r. - o,)     for i = 1,2,..., m (3.27) 

with the index i indicating a particular class. The minimum distance measure associates 

the observation to a particular class. 

5.        Summary 

Summarizing the main MSNN principles, this section has shown: 

1.  The  MSNN  projects   observations  onto  the  one-dimensional   axis  that 
maximizes separation between the mean value of two class clusters. 
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2. The MSNN processing elements utilize a differentiable activation function 
(logsig) that saturates at 1 and 0 for input arguments of positive infinity and 
negative infinity, respectively. Optimal performance requires initialization of 
the network weight and bias to low values to prevent early network saturation 
at these asymptotic values. 

3. The MD optimal value of -400 is attained when one class maps to 10 and the 
other to -10. The worse case MD value of 0 occurs when the two classes type 
to the same output value (both classes mapping to either 10 or -10). 

4. The MSNN training follows a steepest descent algorithm that incorporates a 
variable learning rate and terminates when ninety-percent of the optimal MD 
value is reached. Short of attaining this, MSNN training will cease when the 
learning rate falls below a set lower limit or when a maximum number of 
training epochs is achieved. If either of these latter cases were to occur, the 
weights and bias would be discarded and re-initialized for re-training. 

5. Once trained, the MSNN processes the training data to determine specific 
class identifiers. 

6. When available, a new observation is processed through the trained MSNN. 
The projection of this observation by the neural network is compared to the 
class identifiers. Using an Euclidean distance measure, the observation is 
associated with a class. 

Previous trials have demonstrated the classification capabilities of the MSNN 

(Duzenli, 1998). As indicated above, this was accomplished by training the neural 

network to maximize the separation between the projected means of two class clusters. 

Relying on maximal mean separation, however, may not adequately ensure minimal 

cluster overlap and, hence satisfactory classification performance. The next section 

expounds on the reasons for this behavior and suggests modification to the mean 

separator classification scheme. 

D.   ALTERNATE MEAN SEPARATOR SCHEMES 

Repeated here, Figure III-5 illustrates the principle purpose of the MSNN. As 

previously explained, the original MSNN algorithm favors case (a) because of the larger 

spread between projected cluster means. Yet, examination of this choice demonstrates an 

incongruity of the standard MSNN process. Although case (a) does display greater mean 

separation, more cluster overlap also occurs with this selection of projection direction. 
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Consequently, an observation belonging to class 7t2 may type to class %\, an inaccurate 

selection, because of its position relative to the data cluster. For this reason, case (b) 

would be more appropriate. Figure HI-13 illustrates this situation. 

Figure III-5 (repeated). MSNN Projection. 

Figure 111-13. Anomalous MSNN Classification Situation. 

31 



Ironically, the effect of such a situation would be more profound when there are 

fewer class choices. Recall that the number of class alternatives determines the network 

size. Fewer possibilities result in a network consisting of a diminished number of 

processing elements. This would be disadvantageous since the effect of the irregularity 

shown in Figure HI-13 could not be offset by the increased network flexibility provided 

by other neural mappings. Fortunately, the typical classification situation would entail 

more than a few possible choices, so the likelihood of this scenario would be minimal. 

Moreover, techniques that compensate for data variance can prevent erroneous 

classification such as this. Three such methods are explained here. The first adjusts the 

MSNN classification scheme by pre-processing the input data. The second alteration 

normalizes the class spread by considering projected data variance. Finally, the third 

applies a termination parameter defined for the second modification method to the 

standard MSNN. 

1.        Input Data Preconditioning 

The first attempt to counter overlapping projections of two different classes 

involves normalizing the input data distribution.   It was conjectured that a tighter data 

spread would effect smaller group projections, thereby facilitating class separation. 

• Figure HI-14 demonstrates this hypothesis. 

Figure 111-14. Postulated Effect of Data Preconditioning. 
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With this data pre-processing approach, changes to MSNN training and typing 

algorithms are not needed. However, in addition to the required preconditioning of 

training data and observations, a more sophisticated decision-making scheme would be 

implemented. 

Prior to submitting training data to the MSNN, the training data is normalized 

according to 

p. =-* *- + u., (3.28) 1 a. l 

i 

with p, and p,* respectively being the data values before and after normalization; p,,- 

representing a vector of class feature mean values; and c; representing a vector of class 

feature standard deviation values.   We recognize that this normalization preserves the 

mean values by removing the feature averages and then reapplying them after scaling. 

With n training data points and m classes, training data normalization would increase the 

number of floating point operations by a factor of n*m. 

Having been trained with normalized data, for the MSNN to accurately classify 

uncategorized data the observations must be similarly adjusted. Therefore, Equation 3.2.8 

is also applied to unclassified observations prior to processing by the MSNN. But while 

the training data can be associated to a particular class, the nature of the classification 

problem dictates that the class of the observation is obviously unknown. Preconditioning 

of observations consequently calls for data normalization by the statistical parameters of 

all possible classes. Accordingly, the computational requirement has been increased by a 

factor of m, the number of classes. 

Using the adjusted training data, the MSNN's performance parameters and class 

identifiers are determined, as described previously by Figures HI-9 and IE-10. All 

equations used during the MSNN training and typing phase apply. The trained network 

then transforms the normalized observations into the decision space, where the network 

compares each mapped outcome to the identifier of the particular class associated with 

that scaled version. That is, the output resulting from an observation scaled by class / 

statistics would be compared to the class i type identifier. In the end, the class identifier 

33 



most similar to its corresponding network output as determined by Euclidean distance is 

chosen as the proper category of the observation. Compared to that of the standard 

MSNN classifier, each mapping and matching routine entails no additional computations. 

True, each observation would undergo m such processes, one for each observation 

scaling; but, this factor has already been justified. Overall then, an input preconditioning 

approach increases the number of computer operations by a factor of (n+l)*m. For large 

training sets and many distinct classes, the added computational load is not trivial. 

Yet despite this drawback, the disadvantage caused by a large computational 

requirement could be overlooked if actual trials demonstrate a considerable improvement 

in network performance. Unfortunately, enhanced robustness may not be demonstrated 

when input standard deviations are less than one. Under these conditions, normalization 

would make the training data distributions more diffuse and not compact. In addition, 

since the normalization is performed in the feature space, the effect of input data 

preconditioning may not affect the decision space as positively as Figure IE-14 shows. 

The mapping of the normalized data points may cause the projection distributions to be 

tighter, more spread out, or unchanged depending on the neural networks initializations 

and training trajectory. For these reasons, decision space normalization is considered as a 

second method to enhance MSNN performance. 

2.        Projection Space Normalization 

a.        Concept 

By reducing the feature space noise level, the first modification to the 

MSNN classification scheme sought to improve network performance with only minimal 

changes to the standard algorithm. Believing input data normalization would result in a 

less ambiguous, more tightly clustered class distribution, it was thought projection into 

the MSNN decision space would not disrupt this cohesion. Consequently, the resulting 

compact clusters would enhance class separation. 

Upon reconsideration, however, it was recognized that (1) normalization 

may not reduce the variance of the data distribution (e.g., in case in which the feature 

standard deviation was already less than one) and (2) since the MSNN transformation is 
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non-linear,  projection into  the decision  space  could detrimentally  alter the  data 

distribution within a cluster. 

So, instead of trying to obtain an optimal output by pre-processing the 

input features, a second variation of the MSNN would instead optimize the output 

obtained. By minimizing the variance of the projected data while still maximizing mean 

separation, projection cluster overlap would be reduced, thereby lowering the likelihood 

of inaccurate classification. As a result of this combination of actions, a large variance 

may be tolerable if mean separation is likewise large; while a smaller spread could be 

unacceptable for closely spaced class groupings. Figure IE-15 illustrates this notion. 

i(b) ; 

l>    I 

A A, 
(d) 

Figure 111-15. Relative Significance of Mean Separation to Variance. 
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Shown in the decision space, Figure HI-15 illustrates four combinations of 

mean separation and variance and the resulting effect on classification capabilities. For 

instance, plots (a) and (b) illustrate the obvious conditions with respect to distribution 

variance. For a given mean separation, overlap is unlikely with low data spread (plot 

(a)); while the converse is true with large variance (plot (b)). Figures HI-15 (c) and (d), 

however, emphasize that it is the relative, and not absolute, magnitudes of mean 

separation and variance that are significant. In plot (c), large overlap occurs despite low 

variance; but in plot IH-15(d), no overlap results regardless of a large variance. 

Therefore, the approach does appear to be more logical than either of the two earlier 

MSNN models. 

Executing this process, however, will involve changes to the MSNN 

procedure. The MSNN class typing and decision-making phases depicted in Figures m- 

10 and m-12 are still applicable and will not require change; but aspects of the training 

phase will need revision. Alterations to the training performance measure and the 

training termination criteria are considered. 

b. Modified Mean-Difference Projection Index 

MSNN training with projection space normalization does not require 

modification to the network training procedure. The processing element and the data 

flow path as depicted earlier in Figures ITI-7 and HI-9 remain unchanged. The 

performance measure specified by Equation 3.15, however, will be modified. Taking 

into consideration the projection space variance of the two transformed data distributions, 

the new mean-difference projection index (MD2) is defined as 

MS  _   [E{(20-O(w.Pl+b)-10)-(20-^(w.p2+b)-10)}]2 

var(20 • <5(w. pl + b) -10) + var(20 • 0(w. p2 + b) -10) 

=      [E{g>(w.p,+b)-<E>(w.p2+b)}]2 

var(<&(w. pj + b)) + var(3>(w. p2 + b))' 

where 0 again represents the logsig activation function and var symbolizes the statistical 

variance. 
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Because of this new projection index, the gradient portion of the mean- 

difference learning rate must be recomputed. Taking the partial derivatives of MD2, as 

specified by Equations 3.23 and 3.24, yields 

^ei = 2K[K(E{a|^+ßi)-E{a}.EA-E{ß}.E#)) -E{|^-|£-}]  (3.30) 
dw dw      dw dw dw dw   dw 

^ = 2K[K(E(a^+P^}-E(a).EÄ-E{ß).E(|))-E(|-f(],     (3.31) 
3b db      db db db do    do 

with the parameters K, a, and ß defined as 

 E{a-ß)  
K_E{a2+ß2}-E2{a}-E2{ß} 

a = <D(w. pi + b), -^- = O' (w. pi + b) • pi, -^ = O' (w. pi + b) 
dw db 

ß = 0(w.p2 + b),-^ = 0'(w.p2 + b).p2,-f- = <D*(w.p2 + b). 
dw db 

As before, the logsig activation function, <J>, and its derivative are defined by 

4> = logsig(n) =         3> = logsig'(n) = —— TTö"- 5 ö        l + exp(-n) exp(n)(l + exp(-n))2 

Note that MD2, a, ß and their derivatives with respect to the neural network bias are all 

scalar quantities. The derivatives of these parameters with respect to the weight vector 

are, on the other hand, vectors. This agrees with the MSNN learning rule equations, 

Equations 3.23 and 3.24. 

With the projection index now expressed as a ratio of mean separation to 

sum of projection variance, the range is no longer constrained to [-400,0]. In fact, in the 

optimal situation, the sum of variance is zero and therefore MD2 is undefined. 

Conceptually, a small variance and the resulting large magnitude for MD2 concurs with 

the best case situation described by the numerator of the projection index, that of a large 

mean difference. But, an infinitesimally small denominator causes computational 

difficulties. To preclude this, the denominator of MD2 and its derivatives are limited to a 

minimum value of 10"10. 
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c.        Modified Termination Requirement 

The training phase of the standard MSNN terminated either on maximum 

epoch limit, minimum learning rate, or optimal performance measure. The first two 

criteria are still valid within the framework of the projection space variance modification; 

however, the latter case no longer has any meaning. In the best case scenario, the 

performance measure is unbounded and thus cannot be used to end training. Multiplying 

the MD2 projection index by its denominator (i.e., the sum of projection variances) may 

allow for implementation of a termination criteria; but, this termination requirement 

would amount to only the projection space mean separation, thereby ignoring the 

relevance of data spread. Because of this, a new termination index that measured the 

ratio of data variance to mean separation was defined. 

Consider the projection space data distributions shown on Figure HI-16. 

Improving classification performance relies on maximizing the separation, AV, between 

the points Xi and x2 relative to the mean separation, AM. Based on an error tolerance, 

these points are found using statistical error function tables, assuming both projected data 

sets are normally distributed. The termination parameter, the variance-mean ratio 

(VMR), is then defined as AV/AM. For a given mean separation, imposing a threshold on 

this ratio specifies the minimum spread value AV and consequently the allowed variance 

of the projected class distributions. A more rigorous derivation of this parameter follows. 

VMR = AV/AM 

CLASS ji! CLASS %2 

Xl x2 

Figure 111-16.   Variance-Mean Ratio. 
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The primary assumption needed for the derivation of the VMR criterion is 

that, in the decision domain, the projected data is normally distributed. By making this 

claim, error function tables and known characteristics of normal distributions can be used 

to analytically derive VMR. But, to verify this supposition requires examining the 

attributes of the projected data. Figures BI-17 through III-20 illustrate the transformed 

data distributions for each class of a two-class classification problem. Plots (a) and (b) 

display the normality plots of the resulting distributions. A non-vertical, linear plot of '+' 

marks superimposed on the dashed line denotes a Gaussian distributed data set. In 

contrast, a curvature in the plotting of these marks indicates a departure from normality. 

Plots (c) and (d) are the corresponding histograms. 

In the optimal case (Figure HI-17), the data is far from Gaussian. This, 

however, is desired. Instead of the expected bell-shaped data distribution characteristic 

of a Gaussian curve, the data shown in Figure HI-17 shows one vertical bar. Recall that 

when optimally trained, the MSNN processing element will precisely map one class to 10 

and the other -10, as shown. As will be defined shortly, VMR for this case is 1 and the 

assumption of normality is not required. 

In the least desired situation depicted by Figure III-18, the data is again far 

from Gaussian. Although two vertical bars are now shown for each class, indicating poor 

data classification, all mappings are precisely to one of the extreme values. 

Consequently, mapping into the projection space did not result in data overlap and the 

assumption of normality is again not required. 

In the intermediate cases shown on Figures HI-19 and 111-20, it is apparent 

that the transformation into the decision space was not precise. As a result data overlap 

may occur. In three of the four cases shown (both classes of Figures IE-19 and class 7t2 

of Figure m-20) the distributions are nearly normal, so the initial assumption holds. For 

class 7ti of Figure m-20, however, the normality plot indicates that the tail of the 

distribution extends further out than that of a normally distributed data set. This implies a 

greater amount of data overlap than assumed by a Gaussian distribution. Fortunately, this 

situation is atypical.   Because of the logsig activation function, the input data tends to 
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Figure 111-17. Example of Projected Data Distribution, (a) Class 71! 
Normality Plot (b) Class 7t2 Normality Plot (c) Class % 
Histogram (d) Class 7t2 Histogram. 
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Figure 111-18. Example of Projected Data Distribution, (a) Class 7ti 
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Figure 111-19. Example of Projected Data Distribution. (a)Class7ii 
Normality Plot (b) Class 7t2 Normality Plot (c) Class %i 
Histogram (d) Class n2 Histogram. 
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Figure 111-20. Example of Projected Data Distribution, (a) Class Tti 
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map to one of the optimum values (i.e., 10 or -10). Yet, to compensate for this aberrant 

case, stringent requirements will be placed on VMR. 

Accepting the assumption of a normally distributed data projection, the 

derivation for VMR is as follows. For the two classes shown in Figure HI-16, the 

projection of class TCI has a mean \xx and standard deviation o\. Correspondingly, the 

projection of class 7c2 has a mean u2 and standard deviation o2. Unlike in the feature 

space, the class means and standard deviations are scalar quantities owing to the one- 

dimensional projection by the neural network's linear and non-linear mappings. 

Taken from error function tables, the error tolerance specifies the location 

of xi and x2 on the projection axis. For instance, with an allowable error set at 0.5%, the 

threshold points for a zero-mean, unit-variance, normally distributed class are ±2.52 units 

from the mean. That is, 0.5% of the distribution reside in the tails beyond these locations. 

Applying the known statistical parameters of the actual classes, these positions are found 

tobe 

Xa = Ua + 2.52 • o-a, (3.32) 

Xb = Ub + 2.52 • Ob. (3.33) 

In Equations 3.32 and 3.33, the subscripts a and b are used to derive the 

formulae without having knowledge of the actual orientation of classes m and %2. Li the 

general sense, subscript b refers to the class with the more positive mean. So, in terms of 

Figure HI-16, xa corresponds to xi; xb to x2. Taking the difference of xb and xa yields AV: 

A V = Xb - Xa 

= (Ub - 2.52 • Ob) - (Ua + 2.52 • Oa) 

= (Ub-Ua)-2.52(Ob + 0-a). (3.34) 

Using Equation 3.34, the variance-mean ratio (VMR) can be expressed as 

VMR - AV - (M»-M«)-2.52(ob + q.) 
AM Ub - Ua 

,      2.52(Ob + Oa) 
= 1 -. (3.35) 

Ub-Ua 

42 



To account for cases in which improper class assignment results in the mean of class a 

being more positive than the mean of class b, an absolute value is introduced to 

emphasize the magnitude and not the sign of the difference in means. Equation 3.35 

therefore becomes 

VMR=l-2f(gb+,ga). (3.36) 
|Ub-Ua| 

If Equation 3.36 had been incorrectly derived, the second term would have 

been added instead of subtracted. 

Equation 3.36 establishes how tightly clustered the class projection into 

the decision space must be. Recognizing that a VMR of zero would only incur the 

acceptable error limit (here, 0.5% error) for a Gaussian distributed data sample, a VMR 

greater than zero imparts an even higher requirement on projected class variance. This 

compensates for any situations in which the data distribution is not Gaussian and 

institutes the precision required of the neural network training. Caution must be observed 

for negative VMR values. This implies a mean separation that is smaller than the sum of 

variances and hence, a large degree of overlap. 

During actual implementation, VMR terminated the training cycle only 

after an improvement in MD2 (i.e., a more negative value). In retrospect, however, 

checking MD2 was not required. Since this modification considers both mean separation 

and projection variance, an increase in mean-difference (MD2) does not necessarily 

indicate worsening conditions, as it does for the mean-difference (MD) of the standard 

MSNN. Consequently, network training should have been stopped on VMR threshold, 

maximum epoch limit, or minimum learning rate, without consideration for the MD2 

projection index. 

3.        Further Implementation of the Variance-Mean Ratio 

Perhaps the strength of projection space normalization modification does not lie 

in the upgraded performance parameter, MD2, as originally intended, but rather in the 

termination parameter, VMR. Because of this possibility, the third MSNN variation used 
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VMR, vice the empirically determined ninety-percent of optimal MD, as the training 

termination requirement for the original MSNN method. 

E.       SUMMARY 

Chapter m discussed several techniques used to classify observations. These 

methods include a parametric statistical classifier and five neural network architectures. 

The statistical classifier of interest was a quadratic classifier. The decision rule for this 

method was derived and its applicability to normally distributed data, highlighted. 

The first neural network examined was the single layer perceptron. This neuro- 

classifier used linear separation boundaries to partition classes into their own separate 

spaces. The primary difficulty encountered with the perceptron networks was the 

inability to use optimization techniques to guide the network's training. Instead a simple, 

albeit powerful under certain situations, rule governs perceptron learning. 

Next, the Mean Separator Neural Network (MSNN) first introduced by Duzenli 

and Fargues was explained. This network architecture and variations on its design are the 

principle focus of this study. Classification with MSNN are performed by projecting data 

onto an one-dimensional axis. The mean-difference (MD) performance parameter 

maximizes the separation between class mean values, enabling classification of 

observations to the proper category by using a distance metric. 

Improved performance was sought by modifying the MSNN to consider the data 

variance. One alternative mean-separator normalized the input space in an attempt to 

produce tight class clusters. A second, more promising, approach normalized the 

projection space using an upgraded performance parameter, MD2, and a new training 

termination criteria, VMR. Together, these metrics maximized the projected mean 

separation while also tightening the decision space data spread, reducing data cluster 

overlap. Hypothesizing, however, that the primary driver to restricting this overlap was 

the termination parameter, VMR, and not the modified performance parameter, MD2, 

classification using the standard MSNN projection index, MD, coupled with the new 

termination criteria was considered as a third modification to the MSNN. In the 

following chapters, these MSNN variants - MSNN with preconditioned input space, 
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MSNN with normalized projection space, and MSNN with VMR termination - will be 

referred to as MSNN Mod 1, MSNN Mod 2, and MSNN Mod 3, respectively. 

Chapter IV will next discuss the preliminary investigations into the effectiveness 

of the individual classification tools. 
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IV. VERIFICATION OF CLASSIFIER PERFORMANCE 

Chapter HI introduced and explained the implementation of the different 

classifiers considered in this study; one parametric classifier and five neural networks. 

This chapter assesses these methods through simulations. MATLAB program codes used 

during these trials are provided in Appendix C. 

A.       SIMULATION PROTOCOL 

A three-class separation problem was considered to test the performance of the 

subject classification methods. Working in three-, ten-, and fifty-dimension input spaces, 

the classifiers used 100 training objects per class to model the data and then used this 

representation to categorize 1000 trial observations per class. Performing the tests under 

various noise conditions emphasized the robustness of the classification methods. 

Specifically, the signal-to-noise ratios (SNRs) simulated were ±20 dB, ±15 dB, ±10 dB, 

±5 dB, and 0 dB. Absent from this list is the no-noise case since generation of zero- 

variance data would identify only one point for each class. 

Constructing the training and testing data objects required determining class 

statistics. The mean values for each class feature were randomly selected from a uniform 

distribution. To focus the initial neural network activity in the logsig dynamic range and 

thereby prevent neural network saturation, these mean values were constrained to [-1,1]. 

During real-time analysis, signal power is normalized. Hence, the normalized sum of n 

feature variances gives signal SNR, as shown by Equation 4.1: 

SNR = lOlogio 
y-*j 

(4.1) 

Consequently, when SNR is known Equation 4.1 can be used to randomly select each 

feature variance from a uniform distribution. 

Having randomly specified the mean and established the variance values for each 

class, Gaussian distributed features were simulated to form the 300 training and 3000 

testing observations (100 and 1000 for each class) required per trial.   Examples of a 
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three-class, three-feature classification problem with low and high noise conditions are 

illustrated in Figure IV-1 and IV-2. The two-dimensional plots in each figure depict data 

projection onto two of the three dimensions. As expected, decreased SNR resulted in 

increased data overlap, thereby suggesting increased classification difficulty. 

Feature 2 Feature 1 

Feature 1 Feature 1 
o 2 

Feature 2 

Figure IV-1. Example of 3-Feature Data for Classification (low noise). 

Feature 2 Feature 1 

-2 0 2 

Feature 1 
-2 0 2 

Feature 1 
o 2 

Feature 2 

Figure IV-2. Example of 3-Feature Data for Classification (high noise). 
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Lastly, after creating the artificial feature vector, the data was normalized for 

MSNN Mod 1 implementation (as specified by Equation 3.28) and the training data 

covariance matrix was calculated for use by the statistical classifier. The results obtained 

with this parametric classifier are considered next. 

B.        INDIVIDUAL CLASSIFIER PERFORMANCE 

1.        Statistical Classifier 

Chapter IE defined the quadratic classifier decision rule as 

di(x) = ln|2:i| + (x-jii)
T2::1(x-fii)-21nPi. (3.8) 

This classifier categorized testing objects by selecting the class that resulted in the lowest 

value for the distance quantifier. The observations x, covariance matrix 2, and mean 

vector u, were obtained as earlier explained. The a priori probability, Pi, was determined 

by assuming equal likelihood for all class types; P = 1/m, with m being the number of 

classes. 

Recall a crucial assumption made during the derivation of Equation 3.8 required 

that the observations x form a normally distributed data set. The trials met this 

prerequisite by using a normally distributed random generator to produce the artificial 

signal features. Since these random variables were created without interdependence and 

are therefore uncorrelated, the joint distribution of the random variables is a product of 

the individual distributions. Hence, the observations are multivariate normal, indicating 

the quadratic classifier can be used. 

Convinced that the quadratic classifier can be appropriately applied, 3000 test 

objects per trial were classified. For all combinations of the nine SNR levels and three 

input space sizes, five trials were conducted. This amounts to the classification of 

405,000 test objects. For convenience, the simulation results obtained for this and all 

other classifiers are collected in Appendix B. Tables B-l through B-3 contain 

classification confusion matrices of the statistical classifier trials and Figure B-l plots the 

performance indices indicated by these tables. These results indicate that the quadratic 

classifier performed remarkably well under the simulated conditions.    As expected, 
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misclassification decreased with increased SNR and feature space size. A comparison of 

all classification techniques will be discussed later. 

2.        Perceptron 

The quadratic classifier models each class based on the statistical parameters of 

the training data. The neural network classifiers, however, use a non-parametric learning 

algorithm to train the network for class recognition. That is, the actual data, and not its 

distribution information, are used to train the network to differentiate the class. 

One consequence of neuro-classifier training, however, is the absence of a unique 

solution in many circumstances. For instance, in the case of the perceptron neural 

network, different decision boundaries arise dependent on the initial weight and bias 

values. Recall, perceptron training was governed by the learning rules defined by 

Equations 3.11 and 3.12: 

wnew = wo.d +e.p
T = w

old +(t-a).pT (3.11) 

bnew =bold +e==boId +(t_a) (3 12) 

Since the update terms in Equations 3.11 and 3.12 are indirectly affected by the old 

weight and bias values through a, perturbations in the initial weight and bias settings can 

alter the final solution. In addition, there is no way to tell if an alternate weight and bias 

will improve network training; there is no method to determine the best starting point for 

perceptron training. To account for this uncertainty, the perceptron neural network was 

trained five times for each set of training data. For each network re-training, random 

generation ensured different weight and bias initializations were used. This process was 

then repeated with five different training data sets to test network durability. 

Consequently, overall the perceptron was trained twenty-five times for each noise and 

input space condition to provide for a more general understanding of its capabilities. 

After each network training, the perceptron classified 1000 objects for each class 

per trial; in excess of two million objects over all simulations. Tables B-4 through B-6 

and Figure B-2 summarize the results of these trials. However, not all test data was typed 

to one of the possible classes.  As previously explained, this peculiarity arises when the 
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number of class possibilities (2** for a network of \i  processing elements) exceeds the 

number of actual classes.  Table IV-1 indicates the percentage of such occurrences for 

each SNR level and input feature size. 

SNR 
(dB) 

3 FEATURES 
10 

FEATURES 
50 

FEATURES 

20 0.3 0.0 0.0 

15 0.7 0.1 0.0 

10 0.8 0.1 0.1 

5 3.6 0.9 0.1 

0 4.8 3.1 0.2 

-5 12.5 9.9 3.0 

-10 14.6 13.6 5.1 

-15 17.7 16.8 8.0 

-20 14.6 19.1 15.7 

Table IV-1. Observed Percentage of Perceptron Non-Type Classification. 

Tables B-4 through B-6 and IV-1 indicate acceptable results at positive SNR levels, but 

severely degraded perceptron performance with increased non-type classifications in 

noisy environments.   In large part this is attributable to the linear decision boundaries 

used to separate the different classes.   As SNR decreases, resulting in increased data 

encroachment into neighboring partitions and ultimately more cluster overlap, the 

perceptron's linear separators cannot adequately maintain class division.  Consequently, 

classification performance suffered. 

3.        MSNN Methods 

The quadratic classifier and perceptron served as benchmarks for measuring 

MSNN performance. For the same reason that the perceptron was subjected to multiple 

training cycles, each MSNN variation was trained with five different weight and bias 
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initializations for each set of 100 training observations per class for a three-class setup. 

To reiterate, the MSNN alternatives were 

1. Standard MSNN 

2. MSNN Mod 1: MSNN with feature space preconditioning 

3. MSNN Mod 2: MSNN with projection space normalization 

4. MSNN Mod 3: Standard MSNN with VMR termination 

For the modifications that utilized the VMR termination parameter (variations 3 and 4), 

AV was based on 0.5% of the observations residing in the fringes of the data distribution 

and the VMR threshold was set at 0.90. With these stringent criteria, minimal data 

overlap is expected when network training secures on VMR. Unfortunately, a post- 

simulation record review revealed that this was not the case as network training often 

terminated on maximum epoch limit. 

Once trained, the tuned networks classified 3000 test objects per run. As 

previously stated, this training/testing scheme was repeated with five different data sets to 

quantify network robustness. Simulation results are presented on Tables B-7 through B-9 

and on Figure B-3 for the standard MSNN; on Tables B-10 through B-12 and Figure B-4 

for MSNN Mod 1; on Tables B-13 through B-15 and Figure B-5 for MSNN Mod 2; and 

on Tables B-16 through B-18 and Figure B-6 for MSNN Mod 3. Not surprisingly, neural 

network performance deteriorated with increased noise levels and decreased feature space 

size. 

In addition to these results, it is also instructive to note some characteristics of the 

MSNN implementation not pertinent to either the statistical classifier or perceptron 

neural network. For instance, plotting the surface of the mean-difference parameter, MD, 

over a range of weight and bias values provides insight into the behavior of the network 

training trajectory. Unfortunately, plotting limitations prevent graphical representations 

of the MD projection index and every elements of the simulated feature space since this 

would require hyperspace imaging. At most only two degrees of freedom could be used 
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to form the three-dimensional image of a particular projection index surface. Therefore, 

a one-dimensional classification problem was analyzed. 

Figures IV-3 and IV-4 illustrate a one-dimensional classification problem and the 

neuron map for its sole standard MSNN processing element. In particular, Figure IV-4 

confirms successful network training, as the test points for each class map to the same 

unique specifier and provide for maximum mean separation. 

_Classjt2. 
H^-0.6 o3 = Q.04 

ClassjCi- 
H = 0.0 a2 = 0.04 

 ■]. I|I|»HNI* «Miiilm *t 

Figure IV-3. Example of 1-Feature Data for Classification. 

Class 7li 
Specifier: -10 

Class %i 
Specifier: 10 

lOO 

Test Point 

Figure IV-4. MSNN Neuron Map of 1-Feature Data. 

Since the feature space is comprised of only one element, plotting the projection 

index surface can be achieved by considering a scalar weight and bias. This is shown in 

Figure IV-5.  Here the upper two graphs display the MD surface characteristics in the 
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vicinity of the trained solution and representative contours; the lower two, a more global 

depiction over a wider range of weight and bias values. 

-400 
10 

Bias -10   -500 
0 
Weight -400    -200       0       200     400 

Weight 

-200. 

-400 
5000 

5000 

5000 

Bias      -5000   -5000    Weight 

MSNN Solution: MD =-400 
w = -436 b = -5.0 

-5000 
-5000 0 

Weight 

5000 

Figure IV-5. MSNN Local and Global Surface and Contour Plots. 

The MSNN solution and corresponding mean-difference rating of -400 confirm 

the successful network training suggested by the network's neuron map. In addition, the 

regularity of the MD surface implies that network resolution to the final weight and bias 

values was unencumbered by any local minima obstacles. 

Recall that a mean-difference of zero is the least desired case. Figure IV-5 shows 

this occurring for a weight of zero regardless of bias, and for large magnitude weight and 

bias values. This latter case corresponds to processing element saturation. Interestingly, 

54 



Figure IV-5 also suggests that in this trial the bias was not a vital contributor to obtaining 

the optimal MD value. Both the local and global plots reveal that a MD value of -400 

can be attained with a relatively small bias. This, however, is primarily a function of the 

class data and not a general trait of mean separator transformation (Equation 3.14). In all 

one-dimensional cases examined, the class means were bipolar. That is, the means of the 

data distributions were created such that they had opposite sign. Consequently, the 

inherent data distribution bias (i.e., combined mean of the two classes) was near zero, 

indicating little need to impose an external bias to maximize mean separation. 

Yet, in general, examination of the mean separator transformation suggests that 

the role of the bias is as a linear translator of the activation function output. The bias 

merely shifts the characteristic logsig plot horizontally. Consequently, bias can be 

disregarded and in its place, a second weight component considered. By considering this 

second weight feature, greater insight into the presence or absence of local minima and 

subsequently their effect on neural network performance can possibly be gained. Figures 

rV-6 (low noise) and IV-7 (high noise) illustrate such a two-dimensional problem. The 

neuron maps (Figures IV-8 through IV-22, even) and mean-difference surface and 

contour plots (Figures IV-9 through IV-23, odd) for the four MSNN variants follow. 

From these figures, it is worth noting the consistency (or lack thereof) in the neuron maps 

and any eccentricity in the shape of the surface plots. 

0.6 

0.4 

0.2 

-0.2 

-0.4 

-0.6 
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-1 
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.Llfl 
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Figure IV-6. Example of 2-Feature Data for Classification (low noise). 
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Figure IV-7. Example of 2-Feature Data for Classification (high noise). 

For instance, Figures IV-10 and IV-18 suggest the futility of data preconditioning 

prior to network training and classification. MSNN Mod 1 consistently produced the 

least consistent neuron mappings and often the smallest mean spread. Further confirmed 

by low mean-difference indices of -134 and -174 respectively shown on Figures IV-11 

and IV-19, the resulting sub-optimal mean separation led to poor classification 

performance. 

On the other hand, the neuron maps and surface/contour plots for the remaining 

three MSNN variants indicate optimal network training achieved with the high SNR 

condition. Figures IV-8, IV-12, and IV-14 depict the maximal separation between class 

means and Figures IV-9, IV-13, and IV-15 report the optimal value for the mean- 

difference projection index. For the standard MSNN and MSNN Mod 3, this MD value 

is given by Equation 3.15; for MSNN Mod 2, MD2 is calculated using Equation 3.29. 

Moreover, the MSNN Mod 2 mean-difference value of -1010 implies a sum of projection 

space variances much less than 10"7, suggesting that transformation into the decision 

domain resulted in a high degree of precision and essentially no data overlap. 

Graphically, this accounts for the vertical slope found on the performance surface of 

Figure IV-13, as opposed to the more gradual descents seen on other plots. Such a 

favorable mapping greatly simplifies the classification task. 
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Figure IV-8. MSNN Neuron Map of 2-Feature Data (low noise). 
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Figure IV-9. MSNN Local and Global Surface and Contour Plots (low noise). 
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Figure IV-10. MSNN Mod 1 Neuron Map of 2-Feature Data (low noise). 
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Figure IV-11. MSNN Mod 1 Local and Global Surface and Contour Plots (low noise). 
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Figure IV-12. MSNN Mod 2 Neuron Map of 2-Feature Data (low noise). 
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Figure IV-13. MSNN Mod 2 Local and Global Surface and Contour Plots (low noise). 
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Figure IV-14. MSNN Mod 3 Neuron Map of 2-Feature Data (low noise). 
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Figure IV-15. MSNN Mod 3 Local and Global Surface and Contour Plots flow noise). 
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Figure IV-16. MSNN Neuron Map of 2-Feature Data (high noise). 
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Figure IV-17. MSNN Local and Global Surface and Contour Plots (high noise). 
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Figure IV-18. MSNN Mod 1 Neuron Map of 2-Feature Data (high noise). 
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Figure IV-19. MSNN Mod 1 Local and Global Surface and Contour Plots (high noise). 
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Figure IV-20. MSNN Mod 2 Neuron Map of 2-Feature Data (high noise). 
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Figure IV-21. MSNN Mod 2 Local and Global Surface and Contour Plots (high noise). 
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Figure IV-22. MSNN Mod 3 Neuron Map of 2-Feature Data (high noise). 
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Figure IV-23. MSNN Mod 3Local and Global Surface and Contour Plots (high noise). 
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The superior performance of these MSNN variants relative to the MSNN Mod 1 

approach is also displayed on the figures representative of high noise conditions. 

Moreover, these plots illustrate the effect of added noise. The wide range global plots 

indicate that by increasing the noise level, the area of optimal mean-difference decreases. 

For instance, consider the results of MSNN Mod 2 shown on Figures IV-13 and IV-21. 

Whereas the optimal region envelops a large area in the low noise case; with increased 

noise corruption, maximal MD2 can only be attained through a narrow selection of weight 

values. Since fewer weight combinations will result in the optimal MD2 value, the 

likelihood of attaining an acceptably trained network is lower. Consequently, more 

misclassifications are probable. 

Also notice that the low SNR plots indicate a greater directionality towards a 

particular weight component, reminiscent of what was observed in the one-dimensional 

case. But, unlike the earlier observation, this is not a result of the simulation protocol 

(i.e., creating intrinsically low bias conditions). For the two-dimensional case, this 

directionality results from the inner product of the weight vector and actual data used, 

and therefore will change from simulation to simulation. 

Curiously, the results obtained with the MSNN Mod 3 were exactly the same as 

those achieved by the standard MSNN. Recall the principle advantage of using the VMR 

termination criteria is that this parameter places a requirement on projection data variance 

in addition to projection mean spread. By considering both parameters, data overlap is 

minimized. Unfortunately, network training often did not secure on reaching the VMR 

threshold. Instead, the MSNN Mod 3 variant terminated the training phase when the 

number of training epochs exceeded the established limit. Because of this, future MSNN 

studies should increase the epoch limit and reformulate the network guidance (i.e., the 

learning rate rules) to take advantage of the VMR criterion while still allowing for a 

dynamic learning capability. 

Analysis thus far has focused on the performance of the individual classification 

methods. The next section compares the six classification tools. 
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C.       CLASSIFIER COMPARISON 

Analysis of the classification techniques provided initial insight into their 

capabilities. The most revealing fact learned, however, does not concern the benefits 

gained by a specific method, but instead speaks to the ineffectiveness of one under the 

prescribed test conditions. The inability of MSNN Mod 1 (preconditioned input data) to 

satisfactorily classify data objects was most notable on neuron mapping plots of the input 

observations into the decision space (Figures IV-10 and TV-18). These figures showed 

imprecise projection of the input data. 

The results of each classifier must be compared to determine if the neural network 

modification improved classification performance. Unfortunately, Figures IV-8 through 

IV-23 and Appendix B do not facilitate performance comparison of the six classification 

techniques. This contrast, however, can be gleaned by fusing the information found on 

Figures B-l through B-6 into three plots differentiated by input space size, shown as 

Figures IV-24 through TV-26. For the purposes of this evaluation, reliable classification 

capabilities are demonstrated at each SNR level if the average correct classification 

percentage exceeds ninety-percent. 

Using this standard, the statistical classifier achieved the most accurate level of 

performance. For a small feature space, the parametric classifier attained over ninety- 

percent accuracy at a SNR of 7 dB. As input space dimensionality increased to fifty 

features, this performance level was maintained for all SNRs. This high classification 

success can be attributed to the classifier's ability to minimize classification error, as 

alluded to in Chapter m. Since the artificial features were normally distributed and 

independently created, the data set was well conditioned, allowing for optimum 

performance of the statistical classifier. 

For the MSNN variants, Figures IV-24 through IV-26 do not clearly indicate 

which technique performs best. The greatest distinction is discernable in the three- 

feature input space. As shown on Figure IV-24, there is little difference between the 

performance of the standard MSNN and MSNN Mod 2, with each maintaining the 

ninety-percent accuracy level down to 5 and 6 dB, respectively. MSNN Mod 3 met this 
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limit at 11 dB and then paralleled the standard MSNN and MSNN Mod 2 algorithms with 

a slight offset. Not unexpectedly, MSNN Mod 1 proved to be the least successful 

technique, with all SNRs resulting in sub-ninety-percent accuracy. 

o 
SNR  (dB) 

Figure IV-24. Performance Comparison: Simulated Features (3). 

o 

Figure IV-25. Performance Comparison: Simulated Features (10). 
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Figure IV-26. Performance Comparison: Simulated Features (50). 
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In general, as the number of input features increased, all classifiers showed 

greater classification success. Moreover, MSNN Mod 1 surprisingly showed improved 

performance equal to the standard MSNN and MSNN Mod 2 methods in the ten- and 

fifty-dimension feature spaces. With these feature space dimensionalities, ninety-percent 

classification accuracy was sustained down to 0 dB and -7 dB, respectively, for the three 

MSNN variants listed. 

Curiously, the MSNN Mod 3 variant demonstrated the least amount of 

improvement. For instance, Figure F/-26 indicates twenty-percent disparity between this 

hybrid method and the standard MSNN at SNRs of -5 dB and -10 dB. This difference 

and lack of significant improvement can again be attributed to MSNN Mod 3 terminating 

its training on maximum epoch limit instead of on VMR threshold. Unlike the standard 

MSNN that re-initializes its weights and bias and retrains the network when network 

learning ceases prior to satisfactorily training, MSNN Mod 3 implements the weight and 

bias it had attained when a termination parameter setpoint is reached. Since acceptable 

network training may not have been achieved, poor classification performance would 

results. 

With an input space dimensionality of three, the perceptron performed on par with 

the MSNN Mod 3 variant to 15 dB. Below this SNR level, perceptron performance 

decline can be accredited to greater data noise; the resulting increased data overlap 

limiting the network's ability to establish linear class boundaries. 

D.       SUMMARY 

Chapter IV utilized simulated data consisting of artificial feature elements to 

measure classification method performance. Considering varying noise and input space 

size, data sets of 300 training and 3000 testing objects were created. For the statistical 

classifier, ten such data sets were created for all combinations of SNR and feature space 

size. For the neural network trials, five data sets were simulated. In addition, because of 

a dependence on weight and bias initialization, the neural networks processed each set of 

observations from five different starting conditions. 
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Considering the empirical results compiled on Figures IV-24, the statistical 

classifier attained the greatest level of classification success. The standard MSNN 

algorithm and MSNN Mod 2 were the next most successful, followed by MSNN Mods 1 

and 3. At high SNR, perceptron performance was comparable to the other classifiers; but 

at increased noise levels, dropped off precipitously. 

Results for ten- and fifty-feature input spaces are also shown as Figures IV-25 and 

IV-26. Due to increased dimensionality, all classifiers performed equally well. In those 

instances where the performance of the different classifiers deviated, classification levels 

were below ninety-percent. Therefore, comparison of the methods is inconsequential 

since all would be considered unacceptable. 

Overall, Chapter IV sought to establish classifier feasibility. Disappointingly, the 

trial simulations did not show a significant difference between the MSNN variants 

studied. The next chapter attempts to make this distinction by examining near real world 

application of these methods through simulation and classification of modulated 

communication signals. 

69 



THIS PAGE INTENTIONALLY LEFT BLANK 

70 



V.   CLASSIFICATION OF MODULATED SIGNALS 

The intent of this thesis is to demonstrate the robustness of the MSNN variants in 

classifying data to the appropriate signal class. In Chapter IV, the performance of these 

neuro-classifiers, as well as that of a quadratic statistical classifier and a perception 

neural network, were evaluated based on the accuracy attained in categorizing random 

vectors composed of artificially simulated features. In this chapter, these classification 

tools will be used to separate data objects consisting of features extracted from synthetic 

communication signals. The process of feature extraction is introduced prior to 

discussing the experimental procedure and simulation results. MATLAB program codes 

used during these trials are presented in Appendix C. 

A.       FEATURE EXTRACTION 

By identifying the class to which a signal belongs, classification tools convert 

data to information, freeing the operator from the tedium of manually associating objects 

to class. Such processes consequently enable the military commander to garner 

knowledge and wisdom efficiently, thereby allowing him to more effectively interpret, 

predict, and appropriately respond to the environment. In short, these classification tools 

increase his situational awareness and improve his decision-making capability. 

However, automating such capabilities is not a trivial endeavor. This thesis has 

identified and demonstrated tools that facilitate information and knowledge management, 

but has neglected to specify how in real-world applications the observation vectors would 

be obtained. Indeed, "a major problem in the area of modulation recognition is the 

choice of distinctive marks for distinguishing between the different types of modulation 

without knowledge of modulation parameters" (Reichert, 1992, p.221). 

In trying to determine the extraction method to employ, most techniques avoid 

time-domain features because they have been shown to lack robustness at low SNR 

(Ghani and Lamontagne, 1993, p. 111). A noteworthy exception to this may be the 

exploitation of hidden periodicities found in cyclostationary signals. As recognized by 

Reichert, attributes of the complex envelope of linearly modulated signals, when mapped 
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to a single power spectral line by an appropriate transformation, uniquely identify the 

underlying modulation type. Moreover, this method is robust in noisy environments 

since uncorrelated noise will not add spectral lines that could be read as modulated 

signal. (Reichert, 1992) 

In another approach, the features of interests were counts falling into subdivisions 

of the signal plane. Conceptually, this gives an empirical distribution of the observed 

data. Then using a distance metric, the Hellinger distance, this distribution can be 

compared to known signal densities. The signal corresponding to the lowest distance 

measure is chosen as the class type of the observations. (Huo and Donoho, 1998) 

Despite interest in these techniques, their incompatibility with neural networks 

and mathematical complexity precluded implementation in this study. So instead, 

spectral characteristics were used. 

Several studies have utilized spectral coefficients as features for classification. 

Duzenli used time-frequency characteristics obtained through wavelet decompositions to 

categorize underwater signals (Duzenli, 1998), while others used Fourier transform 

coefficients for analysis (Ghani and Lamontagne, 1993), (Lallo, 1999). This thesis also 

extracted features from the Fourier domain. The creation of these simulated signals and 

.execution of empirical trials is discussed next. 

B.       SIGNAL SIMULATION 

1.        Signal Construction 

The signal plane consisted of three communication modulation types corrupted by 

varying degrees of additive, white Gaussian noise. The model for constructing these 

signal realizations is represented by Equation 5.1 as 

x(t) = s(t) + n(t), (5.1) 

with s(t) being the uncorrupted signal; n(t), the additive white Gaussian noise component; 

and x(t), the corrupted signal. Specifically, the three signal classes simulated were binary 

amplitude shift keying (2-ASK), binary phase shift keying (2-PSK), and binary frequency 

shift keying (2-FSK). The governing equations for these signal types are 
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SASK(t) = -^rsin(27ifct) for 0 < t < T (5.2) 
VT 

spsK(t) = J-sin(27tfct + cpk)      for 0 < t < T (5.3) 

^-sin(27i SFSK(t) = J-sin(27i(fc+Afk)t)  forO<t<T. (5.4) 

All signal types had a carrier frequency, fc, of 40 MHz and a signal bit period, T, of 10"7 

seconds, resulting in four cycles per message bit. Sampling the continuous signal at 500 

MHz gives a discrete time representation of 12.5 samples per cycle or 50 samples per bit. 

Different signal realizations were then constructed by encoding random baseband 

binary messages with the different modulation types. For 2-ASK, the random message 

determined if the signal amplitude, Ak, was zero or one. For 2-PSK, the random message 

determined if the phase shift, fa, was zero or n radians. For 2-FSK, the random message 

determined if the adjacent frequency spacing , Afk, was zero or 10 MHz. The normalized 

sum of squares over all time-domain components then furnished the signal power of each 

realization. Using this signal power, the noise power for the desired SNR level was 

determined according to 

SNR = lOlogio 
VPnJ 

(5.5) 

and added to the signal realization (Equation 5.1). As with the artificial feature 

simulations, SNRs of ±20 dB, ±15 dB, ±10 dB, ±5 dB, and 0 dB were considered, as well 

as a no-noise case. The final signal representation for each realization was attained by 

normalizing each corrupted signal by its overall power level. 

To extract the features needed for classification, the time-domain signals were 

projected into the Fourier domain where the spectral coefficients directly relate to the 

signal's power spectral density. To identify the needed signal characteristics, two 

techniques were attempted. The more general approach identified a signal's largest 

spectral component and extracted those frequencies whose coefficients exceeded a certain 

percentage of this maximum value. Repeated for 100 training realizations of each signal 
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type, the common frequencies from this set of feature vectors specified the identifying 

attributes for each signal class. A compilation of these class characteristics provided the 

final feature set and dimensionality for the signal space. The training and testing data 

objects of each class would utilize this full description of the signal space, and not just 

the features initially selected for the individual class type. 

Unfortunately, this method proved unreliable. Often one or two components may 

typify a certain class, while thirty or more may be extracted from another. Because of 

this disparity, the signal space did not fairly distinguish each class, especially those 

represented by a small number of attributes. Hence, a more rigid feature extraction 

scheme was considered. 

Previous studies had ascertained that the information needed to discriminate 

different modulation types was contained within a window centered on the carrier 

frequency (Ghani and Lamontagne, 1993, p. 113). Using a 1000-point discrete Fourier 

transform and knowing the sampling frequency, the carrier frequency was found to reside 

at bin 80. For the 2-FSK signals, a second predominate spectral spike also appears at 50 

MHz, the sum of the carrier frequency and adjacent frequency spacing; bin 100. 

Knowing the bin location of the 40 MHz carrier frequency, three schemes were 

used to extract features from the main and first side lobes of the spectrum. In the first 

case, the fifty-one spectral coefficients from between bin 30 and 130 (i.e., every other 

frequency bin) were used as the extracted features. The second case used the coefficients 

of every fourth frequency; the last, every tenth bin. Respectively, the second and third 

schemes constitute a signal space of twenty-six and eleven input variables. Figures V-l 

through V-3, verify that the selected spectral components do distinguish the three signal 

classes. Taken for the eleven feature signal space, these time and spectral representations 

of noise-free simulated communication signals specifically show that 2-ASK has more 

spectral energy concentrated in the carrier frequency than 2-PSK. The spike at bin 80 is 

larger and the side lobes are more subdued for 2-ASK. Also, these two modulation can 

be separated from 2-FSK by the absence of the second frequency spike at bin 100. 
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Figure V-3. Simulated 2-FSK Signal (no noise), (a) modulated signal vs 
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number (c) spectral characteristics vs frequency bin (d) 
extracted frequency bins. 

Examples of noise-corrupted signals are shown on Figures V-4 through V-6 for a 

SNR of 20 dB, and on Figures V-7 through V-10 for an SNR of 10 dB. In these figures, 

plot (a) depicts a sample of the uncorrupted normalized time-domain signal versus 

sample number; plot (b), the noise-corrupted version versus sample number. Plot (c) 

shows the spectral characteristic of the corrupted signal as a function of frequency bin, 

while plot (d) displays the frequency bins chosen for an eleven-feature input space. 

In retrospect, however, the chosen frequencies should have been more judiciously 

selected, such as through a principal component analysis or other feature reduction 

method that more compactly describes the signal space (Duzenli, 1998), (Duzenli and 

Fargues, 1998), (Fargues and Duzenli, 1998), (Brunzell and Eriksson, 1999). Not having 

done so led to inconclusive results for classification of noise-corrupted signals. 

Lastly, recognize that a rudimentary communication signal model corrupted by 

only additive, white Gaussian noise was considered. More complex modulation schemes, 

multi-path receptions, intersymbol interference, interlaced signals, and different fading 
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environments would make for enhanced simulation realism. In addition, other digital 

signal types, such as radar, optical, and acoustic, could have been substituted for the ones 

implemented here. These factors can be explored in follow-on studies. 

2.        Simulation Protocol 

The test procedure used to classify the simulated communication signals was the 

same as that used for the artificial signal features. Using the process described above, 

100 training and 1000 testing data objects were created for each signal type per trial, with 

the set of simulation trials encompassing all combinations of SNR and signal space size. 

As before, these feature vectors were normalized (Equation 3.28) for use by the MSNN 

variant that required preconditioned input data (MSNN Mod 1) and the covariance 

matrices of the training observations were calculated for use by the statistical classifier. 

The statistical classifier processed ten data sets of 300 training/3000 testing 

vectors each. For the neural networks, five sets of realizations were created; but because 

of neuro-classifier dependence on initial conditions, each data set was processed five 

times with varying starting weights and bias. 

Section V.C reports the findings of these trials. 

C.       SIMULATION RESULTS 

Results for the communication signal simulations are detailed in Appendix B, 

Tables B-19 through B-36 and Figures B-l through B-6. For Tables B-19 through B-36, 

7ti, 7t2, and 7i3 refer to 2-ASK, 2-PSK, and 2-FSK, respectively. 

Unlike the simulations conducted in Chapter IV, the no-noise case could be 

examined for the synthetic communication signals constructed. The results for these 

trials are included in Appendix B and summarized here in Table V-l. This table indicates 

that under no-noise conditions, the standard MSNN algorithm outperformed all other 

classifiers, with MSNN Mod 3 being almost as accurate. In particular, Table V-l does 

not substantiate the improvements expected of the MSNN Mod 2 variant. It does, 

however, corroborate the Chapter IV findings of the MSNN Mod 1 variant. As before, 

the input preconditioning approach proved to be the least successful in classifying the 

generated signals.   Chapter IV results also indicated that the statistical classifier most 
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successfully identified test objects.     Table V-l, however,  does not  support this 

conclusion, showing instead that the quadratic classifier performed the least accurately. 

CLASSIFICATION METHOD 11 FEATURES 26 FEATURES 51 FEATURES 

Statistical Classifier 57.0 33.3 33.3 

Perceptron 83.8 87.8 92.9 

MSNN 94.3 93.8 94.8 

MSNN Mod 1 45.1 64.4 63.0 

MSNN Mod 2 91.4 92.2 92.8 

MSNN Mod 3 92.6 93.1 94.0 

Table V-l. Simulated Signal No-Noise Performance Results (Ave Percent Correct Classification). 

To better understand the decline in statistical classifier performance as well as the 

results obtained with noise-corrupted signals, it is worthwhile to revisit Figures V-4 

through V-9. Although the no-noise representation of these signals (Figures V-l through 

V-3) clearly characterize the signal classes, the noise-corrupted plots show similarities in 

the feature descriptions of the different signal types, particularly between 2-ASK and 2- 

PSK. Comparing the 20 dB realizations of Figures V-4(d) and V-5(d), only the center 

frequency amplitudes differentiate the two modulation schemes. Coefficients of the 

remaining bins have approximately the same magnitude. When the 2-FSK signal is 

considered (Figure V-6(d)), the only significant distinction between the signal classes 

occur at bins 80 and 100, the two carrier frequencies of the 2-FSK modulation scheme. 

The same observations apply to the 10 dB examples. 

Now considering Figures B-l through B-6, the lack of distinguishing features 

between class types explains the poorer results obtained with the noise-corrupted 

simulated signal data as compared to the artificial features of Chapter IV. The reduced 

distinction between modulation types increased classifier confusion, thereby degrading 
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classification performance. Furthermore, altering the signal space dimension did not 

effect the average correct classification percentage of the MSNN variants suggesting that 

the information needed to separate the classes resided in a smaller number of features 

(Figures B-3 through B-6). 

For the statistical classifier, the over-parameterized input space illustrates the 

curse of dimensionality (Bishop, 1995, p. 7). Unlike the neural classifiers that showed 

improved performance (albeit, marginal) with increased signal space size, the quadratic 

classifier exhibited poorer results (Figure B-l). These degraded results were attributed to 

ill-conditioning of the data matrix caused by a linear dependency of the chosen features. 

This supposition was verified by performing a principal component analysis (PCA) that 

reduced the feature space size (Bishop, 1995, p. 310-311). Doing so resulted in the 

improved classifier results of Table V-2. 

FEATURES 

RETAINED   INITIAL 

No NOISE 

BEFORE   AFTER 

SNR 20 dB 

BEFORE   AFTER 

4 

51 33.3 93.5 75.4 87.5 

26 33.3 93.1 79.6 87.0 

11 56.3 55.1 79.0 81.9 

6 

51 33.3 53.0 75.5 89.3 

26 33.3 44.5 79.3 87.1 

11 61.6 54.2 78.8 81.3 

Table V-2. Statistical Classifier Performance Before and After Data 
Conditioning (Ave Percent Correct Classification). 

Table V-2 confirms that the signal space was originally over-parameterized. In 

nearly all cases, the percentage of correct classifications increased, with significant gains 

observed in the no noise case for feature reductions from fifty-one and twenty-six to four. 

Only the no-noise, eleven-to-four or eleven-to-six reductions resulted in moderately 
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poorer results. The results obtained by the eleven-to-four component reduction can be 

attributed to statistical variance. It is expected that conducting more trials would effect 

no change due to data space conditioning. For the eleven-to-six reduction, the declining 

results are caused by selecting a basis set that increased the ambiguity between the 

distinct class data distributions, thereby incurring a loss of distinguishing information. 

But regardless of these instances, pre-processing of the input data through PCA 

techniques generally improved statistical classifier performance. Results validating this 

enhancement over all SNR conditions are included on Figure B-l. 

Fortunately, the signal space over-parameterization that necessitated data pre- 

processing to obtain adequate statistical classifier performance has less effect on neural 

network accuracy. Granted, judicious feature extraction by methods such as principal 

component analysis improves neuro-classifier results; but intensive pre-processing is not 

essential since non-parametric classifiers let the "data speak for itself (Haykin, 1994, p. 

23). In addition, the over-parameterized feature space does not favor any particular 

neural network architectures and, hence, simulation results can be compared. Figures V- 

10 through V-12 compile the data of Figures B-l through B-6 to provide this contrast of 

classifier capabilities. 

Although all noise-corrupted simulated signal trials were inadequate based on the 

ninety-percent correct classification criteria stipulated in Chapter IV, Figures V-10 

through V-12 does allow comparison of classifier performance. For instance, these 

graphs show that without input data conditioning by eigenvalue or other feature reduction 

techniques, the statistical classifier performed worse than all mean separator approaches 

except MSNN Mod 1 in the signal spaces considered. Using a principal component 

technique to reduce the input to four features, however, improved the statistical classifier 

accuracy to the same level as these MSNN methods. 

Figures V-10 through V-12 also show that the perceptron performed worse than 

the MSNN variants in most cases. To account in part for this lower accuracy, Table V-3 

lists the percentage of perceptron non-type classifications for each simulation trial.  As 
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before, this poor classification performance by the perception is attributed to the neural 

network's inability to establish viable class separation. 

SNR 
(dB) 

11 
FEATURES 

26 
FEATURES 

51 
FEATURES 

No Noise 3.6 3.4 0.7 

20 37 11.1 8.5 

15 23.8 7.3 7.9 

10 4.2 9.2 7.2 

5 9.9 6.0 7.5 

0 6.7 15.3 14.7 

-5 15.0 16.8 10.7 

-10 9.6 15.0 14.4 

-15 17.5 8.8 6.9 

-20 10.6 8.9 10.9 

Table V-3. Observed Percentage of Perceptron Non-Type Classification. 

In addition, these figures further substantiate the insufficiency of MSNN Mod 1. 

All plots show poorer performance for this MSNN variant as compared to the other 

MSNN techniques, with this degraded classification being attributed to the inherent 

similarity in the 2-ASK and 2-PSK signal descriptions and greater feature space data 

overlap resulting from input normalization. 

With regards to the remaining MSNN variants, the outcome from trials conducted 

with noise-corrupted signals failed to conclusively identify which was more accurate. 

The simulation results were nearly identical. This, however, does not suggest a 

conceptual flaw in MSNN Mods 2 and 3, but rather indicates inadequate training. As 

before, network training for these modified techniques stopped on maximum epoch limit 

rather than satisfied VMR.   Therefore, the networks were not effectively trained to 
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classify follow-on observation. Once more, increasing the epoch limit, refining the 

learning rate methodology, and softening of the VMR threshold may provided for MSNN 

performance distinction. 

As final evidence of classifier performance, MSNN neuron maps for the SNR and 

feature space conditions of Figures V-4 through V-9 are provided. Shown as Figures V- 

13 through V-20, these plots support the findings just described. Of particular interest, 

Figures V-14 and V-18 demonstrate the inadequacy of MSNN Mod 1 by the non- 

uniformity of the neuron maps. In addition, the neuron maps for the remaining MSNN 

variants illustrate the similarity in 2-ASK and 2-PSK specifiers that resulted in equivalent 

performance plots. 
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Figure V-18. MSNN Mod 1 Neuron Map of 11-Features Simulated Signal Data 
(SNR = 10 dB). 
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D.       SUMMARY 

Chapter V investigated the classification of software-generated communication 

signals in varying levels of noise. For the six classification methods discussed in this 

study, 100 testing and 1000 training realizations of 2-ASK, 2-PSK, and 2-FSK signals 

were created by encoding random binary messages. The experimental protocol followed 

the one used in Chapter IV. The quadratic classifier catalogued ten sets of data, while the 

neural networks processed only five. The neural networks, however, processed each data 

set five times from different initial conditions. 

Figures V-10 through V-12 indicate that all trials were inaccurate (i.e., less than 

ninety-percent correct classification success). This observation, however, is not due to 

the classifiers themselves, but to the feature space definition. A more prudent selection 

would have included parameters that more distinctly differentiated the 2-ASK and 2-PSK 

signals. This not being the case, the simulation results showed a high degree of 

misclassification between these two modulation types. 

Yet, the primary emphasis of this investigation was not to accurately categorize 

observations, but to compare classifier capabilities. For instance, analyzing noise-free 

signal data proved that the standard MSNN algorithm performed best. Furthermore, 

when considering noise-corrupted data, none of the proposed MSNN schemes showed 

substantial improvement over the standard approach. In particular, MSNN Mod 1 

delivered inferior results due to the aforementioned feature description similarity in the 2- 

ASK and 2-PSK signals and increased data overlap caused by signal space normalization. 

The remaining MSNN methods produced outcomes comparable to the original MSNN 

formulation. Hence, no noteworthy advantage was realized by the proposed changes to 

the standard MSNN algorithm. 

The MSNN techniques did fair markedly better than the perceptron neural 

network. Without a priori knowledge of the data set or optimal selection of signal 

features, the mean separators also performed better than the statistical classifier. Granted, 

when the input data was conditioned by feature space enhancing techniques such as the 

eigenvalue methods used here, dramatic gains in quadratic classifier performance were 
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realized. But, for the principal component reduction utilized, this improved outcome did 

not exceed the mean separator results, substantiating the greater utility of neural 

networks, in general, and the MSNN, in particular. 
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VI. CONCLUSIONS 

A.       SUMMARY OF WORK 

The age of enhanced digital data collection and distribution requires electronic 

information management techniques that will assist and not hinder the warfighter. These 

applications must be rapid, reliable, and automated. This thesis investigated the 

continued development of one such tool. 

The Mean Separator Neural Network (MSNN) had previously been applied to the 

classification of underwater signals. This study modified the MSNN and evaluated the 

performance of these variants in categorizing software simulated signals. Starting with a 

general introduction to neural networks, classification techniques were introduced and 

explained. In addition to the original MSNN developed by Duzenli and Fargues, two 

non-MSNN schemes were utilized as benchmarks to gauge proposed methods. The first 

considered was a pure parametric statistical classifier; specifically, a quadratic classifier. 

The decision rule for this statistical classifier was derived for later use: 

The second benchmark implemented was a single layer perceptron neural 

network. The underlying concept of the perceptron was explained and its fundamental 

processing element constructed. Li particular, the decision rule for perceptron neuro- 

classification was presented. To classify using the perceptron, however, first required 

training the network to discriminate the different class types. Hence, the perceptron 

learning rule and its role in network training was discussed. Finally, the disadvantages of 

the perceptron networks were identified as limitations due to the use of linear decision 

boundaries and the lack of solution optimization techniques. As an addendum, the Fixed- 

Increment Theorem of perceptrons was developed for edification. This precept specifies 

that for certain problem types, the perceptron neural networks will converge to a solution 

in a finite number of steps. 

The central emphasis of this proof of concept study was enhanced implementation 

of the MSNN. But, to better understand these improvements, the standard MSNN 

classification scheme was first explained.   The goal of the MSNN is to maximize the 
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mean separation of data projected into a decision space. The mathematical method for 

achieving this objective was presented as a basis for understanding the design of the 

MSNN neural processing element. Then, using this fundamental building block, the 

study next examined the three stages of solving a classification problem with the MSNN: 

training, typing, and decision-making. 

Network training was accomplished using a steepest descent algorithm in which 

the training trajectory was governed by the mean-difference projection index, MD. This 

training algorithm also employed a dynamic learning rate rule to control the training 

trajectory. 

After training the network, typing was completed by using the mean separator 

equation to assign a unique numerical sequence to each class. In the decision-making 

stage, these class specifiers are then compared to the network output of subsequent data 

to identify the uncategorized observations. 

By merely focusing on maximizing mean separation, however, the MSNN fails to 

recognize the impact of data variance. Indeed, wide mean separation may be 

inconsequential if data spread is equally large. Conversely, a small difference in 

projection space means could be acceptable for tightly clustered data. Because of this, 

three modifications to the MSNN algorithm were proposed and evaluated. 

The first MSNN variant (MSNN Mod 1) suggested that MSNN performance may 

be improved by pre-processing the input data. By normalizing the data about its mean, 

we endeavored to tighten the input data distribution and reduce data overlap in the feature 

space. Mapping these distributions into the decision space would then result in greater 

precision to the optimal values; thus, less intersection of the decision space distributions 

and greater classification accuracy. Unfortunately, it was recognized that this may not be 

the case. Input data normalization may increase input data diffusion and transformation 

into the decision space may not preserve cluster cohesion. 

The second MSNN variant (MSNN Mod 2) sought to improve mean separator 

performance by normalizing the projection space instead of the input space. Essentially, 

the concept entailed maximizing projection data mean spread relative to projection data 
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variance. Doing this provides for thorough evaluation of the projection data distributions. 

Because of this, a large mean separation may or may not be beneficial dependent on how 

accurately the input data was mapped into the decision space. That is, data projection 

resulting in a large mean difference may be meaningless if the projected data variance 

was also significantly large. Conversely, small mean separation could be tolerable for 

instances of small data variance. 

Implementation of this model, however, was not as straightforward as that of the 

pre-conditioned input variant. Whereas the pre-conditioned input data method only 

required normalizing the feature space and adjusting the decision scheme, accounting for 

projection space variance necessitated deriving a new performance index (MD2) and 

training termination parameter (VMR). 

The third MSNN variant (MSNN Mod 3) investigated utilized the projection 

index of the standard MSNN algorithm coupled with the new training termination 

parameter developed for the normalized projection space method. 

Utilizing these six classification methods, two types of trials were conducted. In 

the first, random vectors composed of simulated feature components were generated. 

Classifier performance, reported as a percentage value, was measured as the accuracy 

obtained in properly categorizing test data of known class type. In general, increased 

SNR and feature space dimensionality produced improved classifier performance for all 

techniques. Of the benchmarks used, the statistical classifier had the best classification 

results; the perceptron, the worse for all but the largest feature space trials. 

The MSNN variants produced inconclusive results. MSNN Mod 1 performed 

markedly worse with a small feature space size. But as feature space dimensionality 

became larger, input data preconditioning delivered significantly better results. The 

classification performance of MSNN Mod 2 equaled that of the standard MSNN 

approach. This lack of significant improvement was predominately due to the MSNN 

Mod 2 networks not being adequately trained. Network training often terminated on 

maximum epoch cycles rather than VMR threshold. This same reason also partly 

explains the classification performance of MSNN Mod 3. 
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Having gained a rudimentary understanding of each classifier's capabilities, a 

second set of trials tested their performance with software simulated communication 

signals. Specifically, three types of binary modulation schemes were implemented: 2- 

ASK, 2-PSK, and 2-FSK. 

As before, the perceptron had the worse classification results. The statistical 

classifier, however, did not demonstrate the best performance. In fact, unlike the other 

techniques, the quadratic classifier showed lower accuracy with increased feature space 

size. This tendency was due to a correlation between feature space components, resulting 

in an ill-conditioned covariance matrix. Extracting the principal components to reduce 

the input dimensionality dramatically improved statistical classifier performance. 

Examining the outcome of no-noise trials, the standard MSNN methodology 

outperformed all other classifiers. Moreover, when considering noise-corrupted signals, 

simulation results were, as in Chapter IV, irresolute. MSNN Mod 1 did consistently 

present the worse results, presumably due to the similarity in 2-ASK and 2-PSK feature 

components and increased signal space data diffusion caused by normalization. All other 

methods were essentially equivalent. The lack of improvement from MSNN Mods 2 and 

3 was ascribed to inadequate network training. 

B.        SUGGESTIONS FOR FUTURE RESEARCH 

The intent of this thesis was to propose and validate modifications to the MSNN 

classifier. Three such modifications were presented. When considering noise-corrupted 

signals, none showed significant improvement over the standard MSNN approach. In 

particular, MSNN Mod 2, which emphasized projection data variance in addition to mean 

separation, only performed as well as the standard MSNN algorithm. This lack of proof 

of concept, however, is not due to discrepancies in the underlying fundamentals of the 

approach, but rather to method implementation. In particular, two aspects deserve further 

consideration. 

One likely cause of inadequate network training using the MSNN Mod 2 variant 

may be due to reaching the maximum epoch limit prior to satisfying the VMR threshold. 

Therefore, to improve the performance of the MSNN projection space normalization 
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scheme, the maximum epoch setpoint and learning rate rules require thorough 

investigation. With regards to the latter, instead of using an adaptive learning rate 

approach, starting with a static learning rate (i.e., one that is only dependent on the 

gradient of the performance parameter) may provide better results when compared to the 

standard mean separator. 

In addition, it may also be instructive to reduce the stringency of the VMR 

threshold. As used in this study, a VMR value of zero equates to 0.5% class overlap, 

assuming normally distributed data. Furthermore, the termination requirement sets the 

VMR threshold at 0.90. This combination of overlap and ratio may be unnecessarily 

restrictive. Therefore, studies could be conducted to empirically establish justifiably 

values. 

The termination requirement for MSNN Mod 2 should also be re-evaluated. 

VMR was used as a training terminator only if the projection index (MD2 for MSNN 

Mod 2 and MD for MSNN Mod 3) showed training movement towards an improved 

solution. For MSNN Mod 2 this would have become apparent in the VMR value itself. 

Therefore, the requirement to show decreasing performance parameter values is 

unnecessary. For MSNN Mod 3, the performance parameter only takes into account 

projected data mean separation. By neglecting to consider data variance, the underlying 

principle of VMR is disregarded since improved conditions could result when mean 

separation decreases (provided the relative decrease in data variance is greater). 

Because of this inadequacy of MSNN Mod 3, it may have been more beneficial to 

use VMR as the performance parameter instead of either of the two mean-difference 

equations. This performance parameter would essentially be the reciprocal of MD2. As 

such, the difficulties encountered due to the infinitesimally small projection variances 

(i.e., division by zero) would be avoided. 

Once an optimal mean separator algorithm has been determined, the modified 

MSNN classifier could be used to identify real-world signals (e.g., radar, communication, 

acoustic). This would, however, require a high degree of classifier accuracy. Recall that 

the intent of this investigation was to compare proposed alterations to the MSNN 
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algorithm. As such, absolute classifier accuracy was not the aim; rather relative classifier 

accuracy was. If a high degree of absolute classifier accuracy is desired (such as for 

categorizing real-world signals), judicious feature extraction schemes and pre-processing 

techniques are needed. When proved successful, the modified MSNN classifier utilizing 

this refined feature selection approach can then be expanded from a software application 

to direct implementation on an integrated circuit. Having such a device would greatly aid 

the operational commander in understanding the battlespace and making critical 

decisions. 
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APPENDIX A.FIXED-INCREMENT CONVERGENCE THEOREM 

Rosenblatt reasoned that for a single-layer perceptron applied to linear separable 

problems, a solution can be determined in a finite number of iterations. Stated formally, 

this fixed-increment convergence theorem asserts: 

Let the subsets of training vectors Xi and X2 be linearly separable. Let the 
inputs presented to the single-layer perceptron originate from these two 
subsets. The perceptron converges after some no iterations, in the sense 
that 

w(n0) = w(n0 + 1) = w(n0 + 2) = ... 

is a solution vector for n0 < n^. (Haykin, 1994, p. 111). 

To prove this theorem, the following vector notation is used for convenience: 

x = 
w 

and  z = V 
b _lj (A.1) 

Using this notation, the input to the hardlim activation function, n, can be expressed as 

n = w.p + b = xT .z. (A.2) 

Similarly, the perceptron learning rule Equations 3.11 and 3.12 can be combined into the 

single vector equation 

xnew  =xold+ez_ (A.3) 

Given a solution x* to the classification problem, 

*T n = x   «z < (A.4) 
>5>0    if  t = l 

<-5<0 if  t = 0 

Equation A.4 implies that there exists a positive 5 less than the magnitude of the inner 

product n for both target output possibilities. 

After k training iterations, the perceptron learning rule (Equation A.3) results in 

an updated solution be given by 

x(k) = z'(k-l) + z'(k-2) + ... + z'(0), (A.5) 
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where the prime (') accounts for the possible error values 0 and ±1 and it is assumed that 

the w(0) = 0. Taking the inner product of the solution vector x* with Equation A.5 yields 

x*T. x(k) = x*T. z'(k -1) + x*T . z'(k - 2) +... + x*T. z'(0) (A.6) 

and using the inequality relationships of Equation A.4 in Equation A.6 leads to 

x*T.x>k5, (A.7) 

with S chosen as the minimum z'(i).   With the Cauchy-Schwartz inequality, a lower 

bound on the square of the weight vector x(k) is therefore found to be 

H /1N|,2^(x*T.x(k))2    (k5)2 

|x(k)|  >-^ -^L>1^_ (A.8) 
x X 

To find the upper bound for the square of the weight vector at iteration k, 

Equation A.3 is substituted into the length equation: 

||x(k)f =x*T(k).x(k)=[x(k-l) + z'(k-l)r.[x(k-l) + z'(k-l)] (A.9) 

= ||x(k - if + ||z'(k - l)f + 2xT(k - l)z'(k -1) 

When proper classification occurs, the cross-term in Equation A.9 will be zero. If 

misclassification occurs, this term will be negative. Hence, Equation A.9 can be 

rewritten as an inequality: 

|x(k)|2<|x(k-l)|2+||z'(k-l)||2. (A.10) 

Repeating this derivation for all previous iterations of || x(i) ||2, the upper bound on the 

square of the weight vector is found to be 

]x(k)||2 <|z'(0)|2+||z'(l)r + - + |z'(k-l)||2 <kA (All) 

where A is the maximum z'(i). 

Finally, combining Equations A. 8 and A. 11 results in a closed form solution for 

the number of iterations, k, required for perceptron convergence: 
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Ä|x(k)|f<kA 
X 

k< 
x 

(A.12) 
ö" 

The assumptions made to arrive at this conclusion were that (1) a solution is known to 

exist and (2) the length of the input vectors is upper-bounded. (Hagan, et al, 1996, pp. 4- 

15-4-18). 
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APPENDIX B. SIMULATION RESULTS 

To determine the capabilities of the classifiers studied, two types of simulations 

were conducted. The first set of tests gauged the performance of the different classifiers 

by creating artificial features for different class types. Once provided with this initial 

assessment of the different classification schemes, the second simulation measured their 

ability to categorize simulated communication signals. Appendix B contains the results 

from both types of trials. 

Simulation results are presented in two forms. On Tables B-l through B-36, 

confusion matrices report classifier performance. A confusion matrix is an m x m matrix, 

m being the number of categories in the classification problem. Read horizontally, each 

confusion matrix lists the correct class type; vertically, the class type selected by the 

classifier. The elements within each matrix indicate the percentage of objects (i.e., 

testing input data vectors) categorized as a certain class. In particular, the diagonal 

elements give the percentage of correct classifications for a particular simulation 

situation. Averaging these diagonal elements results in a performance index for that 

particular classifier under the specified conditions. Disregarding slight deviation due to 

round-off error, each table row sums to 100% for all classifiers except the perceptron 

neural network. The confusion matrices for the perceptron neural networks do not show 

rows that sum to 100% due to non-class typings as reported on Tables IV-1 and V-2. 

Tables B-l through B-18 report results for the first set of simulations conducted; 

classification of data objects consisting of artificial features. Tables B-19 through B-36 

report results for the set of simulations conducted on simulated communication signals. 

On these latter tables, %\, n2, and 7t3 correspond to simulated 2-ASK, 2-PSK, and 2-FSK 

class of software created signals. 

Plots of the average performance indices permit visual analysis of the effect of 

varying noise level and input space dimensionality. These graphs are provided as Figures 

B-l through B-6. Chapters IV and V contain performance index graphs that allow direct 

comparison of the different classification methods. 
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For all tables and plots, MSNN Mod 1 refers to the MSNN variant with input 

space preconditioning; MSNN Mod 2, the MSNN variant with projection space 

normalization; and MSNN Mod 3, the MSNN variant utilizing the standard MSNN 

performance parameter, MD, and the new training termination limit, VMR. 
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INDEX: 
99.1 

SELECTED 

7t]*                   712*                   7t3* 

i "2 
<     n3 

99.8 0.2 0.0 

0.2 98.2 1.7 

0.0 0.6 99.4 

INDEX: 
97.7 

SELECTED 
7t,*                   7t2*                  7I3* 

g       7t2 

<       % 

98.5 0.3 1.2 

0.4 97.8 1.8 

1.4 1.7 96.8 

SNR = 20dB SNR = 15 dB 

INDEX: 
94.0 

SELECTED 

7t] *                  TE2*                  7E3* 

< 
H 
U 

92.6 5.8 1.6 

6.3 92.3 1.4 

1.6 1.3 97.1 

INDEX: 
86.2 

SELECTED 

Ttj*                   7l2*                  JI3* 

< 
g       TC2 

92.0 3.5 4.5 

4.2 83.5 12.3 

5.6 11.4 83.1 

SNR=10dB SNR = 5 dB 

INDEX: 
73.2 

SELECTED 

TCi*                  7t2*                  %* 

74.2 11.1 14.7 

8.5 83.4 8.1 

18.2 19.7 62.0 

INDEX: 
64.6 

SELECTED 

7li*                    712*                    7C3* 

i *2 
<       7t3 

63.9 17.7 18.4 

18.2 61.5 20.3 

16.6 15.1 68.4 

SNR = 0dB SNR = -5 dB 

INDEX: 
58.8 

SELECTED 
Ttj*                   7t2*                   JI3* 

< 
P        "2 
U 
■<        7C3 

64.3 16.8 18.9 

20.9 66.2 12.9 

31.1 23.0 45.8 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
60.1 

SELECTED 

Hi*                   7C2*                   ^3* 

< 

u 
•<    713 

59.6 23.8 16.6 

20.4 57.4 22.2 

15.8 20.8 63.4 

INDEX: 
52.7 

SELECTED 

TCj*                   7C2*                  7I3* 

i "2 
u 
•<       7t3 

53.7 21.3 25.1 

26.2 46.2 27.6 

25.5 16.1 58.4 

SNR = -15 dB 

Table B-l. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features): 
Statistical Classifier, (see App B cover page for table description) 
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INDEX: 
100 

SELECTED 
7t,*                   7t2*                    7I3* 

< 

u 
<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20 dB 

SNR = 10 dB 

INDEX: 
100 

SELECTED 

TCi*                  7t2*                  7C3* 

<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
96.7 

SELECTED 
TCi*                   7t2*                    Tt3* 

<       7C3 

96.6 2.6 0.8 

2.3 95.6 2.1 

0.4 1.8 97.7 

INDEX: 
100 

SELECTED 
TCi*                   7t2*                   7l3* 

■<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 15 dB 

SNR = 5 dB 

SNR = 0 dB 

INDEX: 
99.7 

SELECTED 

TCi*                 7I2*                  7C3* 

<    n3 

99.7 0.3 0.1 

0.4 99.5 0.1 

0.0 0.0 99.9 

INDEX: 
89.1 

SELECTED 
TCi*                   7C2*                   7C3* 

i  "2 
u 
<       7C3 

90.8 6.1 3.1 

6.8 87.3 5.9 

4.0 6.7 89.3 

SNR = -5 dB 

INDEX: 
76.5 

SELECTED 

71] *                  7C2*                  71,* 

|        "2 

o 
<       7C3 

79.6 13.7 6.7 

13.2 72.5 14.3 

8.0 14.4 77.5 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
77.1 

SELECTED 
TCi*                   7t2*                    7l3* 

<       7t3 

75.6 15.8 8.6 

13.7 76.5 9.8 

10.3 10.5 79.1 

INDEX: 
73.3 

SELECTED 

71]*                 7l2*                  7I3* 

i  "2 
<       7t3 

83.8 8.4 7.7 

12.6 66.1 21.3 

11.7 18.4 69.9 

SNR = -15 dB 

Table B-2. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features): 
Statistical Classifier, (see App B cover page for table description) 
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INDEX: 
100 

SELECTED 

7ti*                    7t2*                   7t3* 

< 
O       7I2 
H 
U 
•<      % 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
100 

SELECTED 
7ti*                   7t2*                   7t3* 

<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20 dB SNR = 15 dB 

INDEX: 
100 

SELECTED 

71] *                    7t2*                   7t3* 

<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
100 

SELECTED 
Ttj*                   7t2*                  7t3* 

|        "2 

<5       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 10 dB SNR = 5 dB 

INDEX: 
100 

SELECTED 
7Ij*                    7t2*                   7I3* 

< 
g       7t2 

U 
•<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
99.4 

SELECTED 
7Ij*                   7I2*                   TC3* 

i  "2 
u 
<     7I3 

99.6 0.1 0.2 

0.6 99.0 0.4 

0.2 0.2 99.6 

SNR = 0 dB SNR = -5 dB 

INDEX: 
96.9 

SELECTED 
Tli*                    7t2*                   7t3* 

i  * 
■<  7i3 

96.5 1.4 2.1 

1.3 97.5 1.2 

2.1 1.0 96.8 

INDEX: 
93.8 

SELECTED 

7li*                   7l2*                  7t3* 

g       712 
ü 
■<        7l3 

94.4 2.8 2.8 

4.3 93.3 2.4 

4.0 2.2 93.7 

SNR = -10 dB SNR = -15 dB 

INDEX: 
96.4 

SELECTED 
7Ij*                    7t2*                   7I3* 

< 
g       7C2 
u 

98.0 1.2 0.8 

1.7 96.2 2.1 

2.5 2.5 95.0 

SNR = -20 dB 

Table B-3. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features): 
Statistical Classifier, (see App B cover page for table description) 
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INDEX: 
96.1 

SELECTED 
7lj*                   7t2*                   7T3* 

■<        7t3 

98.3 0.3 0.5 

0.1 94.5 5.5 

0.0 4.4 95.5 

SNR = 20 dB 

SNR = 10 dB 

INDEX: 
80.9 

SELECTED 

7ti*                   7C2*                   7C3* 

u 
<       7l3 

71.8 2.8 23.4 

1.0 77.4 21.2 

2.6 3.9 93.5 

INDEX: 
55.1 

SELECTED 
7t]*                   7I2*                   IX3* 

U 
•<        7t3 

53.4 8.8 33.8 

9.8 52.3 30.5 

20.5 16.8 59.8 

INDEX: 
95.2 

SELECTED 
7ti*                   7t2*                   7t3* 

<!       7C3 

96.0 0.3 3.6 

0.2 95.7 2.2 

4.0 2.3 93.7 

SNR = 15 dB 

SNR = 5 dB 

SNR = 0 dB 

INDEX: 
73.5 

SELECTED 

7t] *                 7t2*                  7C3* 

<       7C3 

78.7 2.6 12.8 

2.6 64.8 28.2 

7.4 15.2 77.0 

INDEX: 
35.5 

SELECTED 
71,*                   7t2*                   7t3* 

i ^ 
u 
<       7t3 

31.6 12.1 41.6 

16.3 28.1 43.7 

20.2 22.1 46.8 

SNR = -5 dB 

INDEX: 
31.9 

SELECTED 
7t]*                   Jt2*                   7t3* 

i *2 
<       7t3 

26.5 15.7 42.6 

19.2 23.5 41.1 

23.4 18.4 45.8 

SNR =-10 dB 

SNR = -20 dB 

INDEX: 
28.9 

SELECTED 

7t]*                     7t2*                     7l3* 

< 
O        Tb 
H         l 

U 
<        7t3 

20.4 18.7 44.8 

20.2 17.9 47.4 

19.7 18.6 48.4 

INDEX: 
28.4 

SELECTED 
7t!*                    7I2*                    7C3* 

1     "2 
<       7C3 

16.9 11.8 53.2 

14.0 14.0 54.9 

16.1 11.7 54.3 

SNR = -15 dB 

Table B-4. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features): 
Perceptron. (see App B cover page for table description) 
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INDEX: 
99.9 

SELECTED 

TCi*                  7C2*                  7I3* 

< 
P     % H 
U 
•<        7C3 

99.9 0.0 0.1 

0.0 100 0.0 

0.0 0.1 99.9 

INDEX: 
99.8 

SELECTED 

7Ci*                  7t2*                   7E3* 

1  "2 
u 
<     7I3 

99.9 0.0 0.1 

0.0 99.7 0.1 

0.0 0.0 99.9 

SNR = 20 dB SNR=15dB 

INDEX: 
99.6 

SELECTED 

7t! *                   7t2*                   7Ü3* 

<    7l3 

99.8 0.0 0.1 

0.0 99.7 0.2 

0.5 0.1 99.4 

INDEX: 
96.7 

SELECTED 

Til*                 7C2*                  7C3* 

i "2 
u 

96.1 0.2 2.4 

0.3 95.5 2.7 

0.8 0.7 98.5 

SNR = 10 dB SNR = 5dB 

INDEX: 
84.0 

SELECTED 

7Ci*                   7t2*                   %* 

|Ü     "2 
U 
«Ü      7l3 

80.7 2.8 12.5 

2.0 82.5 10.3 

4.1 7.0 88.8 

INDEX: 
52.7 

SELECTED 

7t] *                  7C2*                   TC3* 

i "2 
u 
<       7t3 

45.5 6.6 36.2 

7.3 46.9 32.1 

15.1 15.0 65.6 

SNR = 0 dB SNR = -5 dB 

INDEX: 
38.7 

SELECTED 

7ti*                   7t2*                   7t3* 

J     %1 

< 

u 
•<        7t3 

30.0 14.6 39.4 

13.3 31.5 40.6 

15.0 20.2 54.7 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
32.1 

SELECTED 

7ti*                    7t2*                    TC3* 

i  "2 
<       7t3 

21.9 10.8 49.3 

14.4 21.1 48.1 

15.7 15.0 53.3 

INDEX: 
28.3 

SELECTED 

7t]*                   7t2*                   TC3* 

<       7t3 

16.5 14.0 50.6 

12.4 15.4 51.8 

14.7 14.5 52.9 

SNR = -15 dB 

Table B-5. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features): 
Perceptron. (see App B cover page for table description) 
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INDEX: 
99.9 

SELECTED 
7t,*                    7I2*                    7C3* 

|        "2 

u 
<!      7t3 

99.8 0.0 0.1 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
71.1 

SELECTED 
7li*                   7t2*                   7t3* 

U 
<       7l3 

71.6 5.0 16.6 

6.2 70.6 15.5 

12.4 15.8 71.1 

INDEX: 
34.8 

SELECTED 
7d*                     %2*                    7t3* 

i "2 
u 
<       7I3 

28.5 16.2 38.5 

14.9 28.9 39.9 

19.0 20.0 47.0 

INDEX: 
100 

SELECTED 
71] *                   7l2*                   7t3* 

|         *2 

u 
<        7t3 

99.9 0.0 0.0 

0.0 100 0.0 

0.0 0.1 99.9 

INDEX: 
99.8 

SELECTED 
TCi*                  7I2*                  TC3* 

<       7C3 

99.7 0.0 0.1 

0.0 99.9 0.1 

0.1 0.3 99.7 

INDEX: 
99.3 

SELECTED 
TCi*                    7I2*                   7t3* 

< 
j?       7t2 

u 
■<       7C3 

99.4 0.0 0.3 

0.0 99.3 0.5 

0.2 0.5 99.3 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5dB 

SNR = -15 dB 

INDEX: 
99.6 

SELECTED 

Til*                  7X2*                 7C3* 

|        "2 

o 
<       7C3 

99.7 0.0 0.2 

0.0 99.6 0.2 

0.2 0.2 99.6 

INDEX: 
92.5 

SELECTED 
TCi*                   7t2*                   7E3* 

i  "2 
u 
<       7C3 

90.4 0.6 2.9 

0.4 93.3 3.5 

2.4 3.6 94.0 

INDEX: 
47.2 

SELECTED 
71] *                   TC2*                   TC3* 

u 
•<        7t3 

44.2 16.3 30.6 

17.9 40.9 30.3 

20.8 18.6 56.4 

Table B-6. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features): 
Perceptron. (see App B cover page for table description) 

114 



INDEX: 
99.6 

SELECTED 

7ti*             n2*            7i3* 

i "2 
u 
<       7l3 

99.8 0.2 0.0 

0.6 99.3 0.2 

0.2 0.0 99.7 

INDEX: 
96.8 

SELECTED 

TCi*                  Th*                 1h* 

<       7t3 

98.3 0.0 1.6 

0.0 96.0 4.0 

0.6 3.2 96.2 

SNR = 20 dB SNR = 15 dB 

INDEX: 
95.0 

SELECTED 

Jtl*                    7t2*                   %* 

< 
P        "2 H 
U 

89.5 1.2 9.3 

0.7 98.8 0.5 

3.2 0.2 96.5 

SNR = 10 dB 

INDEX: 
89.0 

SELECTED 

7t] *     •             JI2*                  «3* 

< 
P        ^2 
U 

86.8 5.6 7.6 

1.0 96.4 2.7 

6.8 9.4 83.7 

INDEX: 
65.3 

SELECTED 

TCi*                    7t2*                   %* 

P     ^ 
ü 

58.0 24.0 18.1 

28.1 64.1 7.8 

16.3 9.7 74.0 

SNR = 5 dB 

INDEX: 
54.5 

SELECTED 

7Ii*                   7t2*                   t3* 

U 

51.4 21.6 27.0 

22.4 56.4 21.2 

18.5 25.7 55.9 

SNR = 0dB SNR = -5 dB 

INDEX: 
48.2 

SELECTED 

Jtl*                     7t2*                     %* 

J     %1 

|        "2 
ü 
-<       7I3 

54.7 22.8 22.6 

25.4 50.8 23.8 

27.4 33.6 39.0 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
37.8 

SELECTED 

7Ii*                    7t2*                   %* 

|        "2 

<    % 

32.2 37.3 30.6 

33.5 45.3 21.1 

31.3 32.8 35.9 

INDEX: 
45.0 

SELECTED 

Ttj*                    Jl2*                    7t3* 

U 
<!      7t3 

54.6 17.3 28.0 

36.1 24.1 39.9 

31.5 12.3 56.3 

SNR = -15 dB 

Table B-7. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features): 
MSNN. (see App B cover page for table description) 
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INDEX: 
99.8 

SELECTED                  1 

Ttl*                   7t2*                    JI3*         | 

l        "2 
99.7 0.0 0.3 i 

0.0 100 0.0      1 

0.1 0.0 99.9     | 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
53.6 

SELECTED 

Tti*                   7t2*                    7t3* 

J     Ä1 

|        "2 

u 
<       7t3 

46.0 28.2 25.8 

21.2 56.7 22.1 

18.4 23.4 58.2 

INDEX: 
36.7 

SELECTED 

7t,*            7t2*            7t3* 

|        *2 

u 
•<       JI3 

35.8 32.9 31.3 

29.0 38.7 32.3 

31.9 32.4 35.7 

INDEX: 
99.9 

SELECTED 
7ti*                   7t2*                   %* 

i  "2 
100 0.0 0.0 

0.1 99.8 0.0 

0.0 0.0 100 

INDEX: 
99.4 

SELECTED 

71,*                   7C2*                    7t3* 

< 
O        7I2 

O 
<       7t3 

99.5 0.3 0.3 

0.6 99.3 0.1 

0.2 0.4 99.4 

INDEX: 
90.4 

SELECTED 
71,*                   7t2*                    7I3* 

<       7t3 

93.8 3.5 2.7 

4.0 89.9 6.1 

6.1 6.3 87.5 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

INDEX: 
97.8 

SELECTED 

71]*                   7t2*                   %* 

<       7t3 

97.3 0.4 2.4 

0.8 98.3 0.9 

1.2 0.9 97.9 

INDEX: 
68.2 

SELECTED 
7t]*                   7t2*                   7t3* 

<       7C3 

59.4 22.6 18.0 

15.9 70.9 13.2 

13.4 12.4 74.2 

INDEX: 
44.4 

SELECTED 

71,*                   7C2*                   7C3* 

|        "2 

u 
-<        7I3 

44.9 29.1 26.0 

25.8 45.4 28.8 

27.9 29.2 42.8 

Table B-8. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features): 
MSNN. (see App B cover page for table description) 
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INDEX: 
100 

SELECTED 

7t,*                  7C2*                  7C3* 

< 
P        n2 H 
O 
<       7C3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20dB 

SNR=10dB 

INDEX: 
99.8 

SELECTED 

7ti*                  7t2*                  7t3* 

< 
P        U2 
ü 
<       7C3 

99.5 0.3 0.2 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
98.8 

SELECTED 

7li*                    7t2*                   7C3* 

< 
P        "2 
U 
■<        7t3 

99.1 0.6 0.3 

1.0 98.3 0.7 

0.4 0.4 99.1 

INDEX: 
99.9 

SELECTED 

71,*                   7l2*                   7C3* 

u 
"<        7t3 

99.8 0.0 0.2 

0.0 100 0.0 

0.0 0.0 100 

SNR = 15 dB 

SNR = 5dB 

INDEX: 
99.5 

SELECTED 
7t,*                   7I2*                   7[3* 

< 
P        %2 
U 
<       7C3 

99.2 0.2 0.5 

0.3 99.6 0.1 

0.2 0.1 99.7 

INDEX: 
95.3 

SELECTED 
7t,*                   7E2*                   7Ü3* 

P        n2 
H 
U 
-<        7t3 

95.2 2.5 2.3 

2.0 96.1 1.9 

3.3 2.2 94.6 

SNR = 0 dB SNR = -5 dB 

INDEX: 
75.3 

SELECTED 
Tti*                    7t2*                   7t3* 

< 

u 
<       7t3 

76.7 10.0 13.3 

10.4 76.5 13.1 

14.1 13.2 72.7 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
39.4 

SELECTED 
71,*                  7C2*                  7t3* 

< 
P        U2 

•<        7C3 

41.6 30.4 28.0 

34.5 38.8 26.8 

31.9 30.2 37.9 

SNR = -15 dB 

INDEX: 
56.0 

SELECTED 

TCi*                   7t2*                   7C3* 

< 
P        n2 
U 
•<        7C3 

55.5 22.5 22.0 

22.8 55.5 21.6 

21.0 22.1 56.9 

Table B-9. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features): 
MSNN. (see App B cover page for table description) 
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INDEX: 
89.4 

SELECTED 
71, *                   7C2*                    71,* 

u 
<     7I3 

90.4 8.1 1.6 

5.6 92.5 1.9 

7.1 7.7 85.2 

SNR = 20dB 

INDEX: 
85.8 

SELECTED 

111*                   7l2*                    7E,* 

<       Tl3 

87.3 1.0 11.7 

4.7 85.3 10.1 

14.9 0.4 84.7 

SNR = 10 dB 

INDEX: 
62.6 

SELECTED 
3t,*                   7t2*                   JI3* 

i "2 
u 
<       7t3 

54.8 18.9 26.4 

32.1 53.1 14.9 

14.2 5.9 79.9 

SNR = 0 dB 

INDEX: 
42.7 

SELECTED 
7tl*                   7t2*                   7C,* 

i  *2 
u 
<       7t3 

44.9 30.9 24.2 

29.9 44.1 26.0 

28.3 32.7 39.0 

SNR = -10 dB 

INDEX: 
35.7 

SELECTED 
Jtl*                  7t2*                  7t,* 

u 

63.7 17.8 18.5 

60.6 19.5 20.0 

58.3 17.6 24.0 

SNR = -20 dB 

INDEX: 
83.9 

SELECTED 
Jtl*                   7C2*                   7t,* 

i "2 
<       Tt3 

82.9 1.3 15.8 

2.2 77.4 20.4 

4.0 4.7 91.3 

SNR=15dB 

INDEX: 
80.4 

SELECTED 

111*                  Til*                  7E,* 

< 7i3 

83.9 7.0 9.2 

8.6 83.0 8.4 

14.4 11.2 74.4 

SNR = 5dB 

INDEX: 
52.2 

SELECTED 
71] *                   7t2*                   7t,* 

<       7t3 

47.2 25.5 27.3 

17.8 57.2 25.0 

19.5 28.4 52.2 

SNR = -5dB 

INDEX: 
41.8 

SELECTED                 1 

Tti*                  7t2*                   7t3*        1 

i n2 
u 
<    JI3 

44.7 28.4 27.0     1 

28.2 37.3 34.5     1 

28.6 28.1 43.3     1 

SNR = -15 dB 

Table B-10. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features): 
MSNN Mod 1. (see App B cover page for table description) 
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INDEX: 
96.0 

SELECTED 

jti*              7I2*              713* 

|        *2 

o 
<     7I3 

97.4 2.2 0.5 

3.0 96.2 0.8 

2.6 3.0 94.4 

INDEX: 
96.3 

SELECTED 

7t!*                    7I2*                    %* 

1     "2 
U 
<!     7i3 

96.3 1.5 2.3 

1.8 97.7 0.5 

2.8 2.4 94.8 

SNR = 20 dB SNR = 15 dB 

INDEX: 
97.4 

SELECTED 

71] *                   7l2*                   1X3* 

i "2 
<       7t3 

96.6 0.8 2.6 

0.5 97.4 2.2 

0.7 1.0 98.3 

INDEX: 
94.7 

SELECTED 

7ti*                 7I2*               ' 7I3* 

i "2 
u 
<    7I3 

96.2 0.7 3.1 

5.2 92.6 2.2 

3.6 1.1 95.3 

SNR = 10 dB SNR = 5 dB 

INDEX: 
88.6 

SELECTED 

7Ii*                     7t2*                     7t3* 

i  "2 
<       7t3 

94.1 2.6 3.4 

7.0 87.1 5.9 

7.2 8.4 84.4 

INDEX: 
67.4 

SELECTED 

7ti*                  7t2*                   713* 

< 
P        "2 H 
U 
<!     7i3 

57.8 20.8 21.4 

15.9 68.7 15.4 

11.5 12.7 75.8 

SNR = 0 dB SNR = -5dB 

INDEX: 
55.7 

SELECTED 

Tti*                   7t2*                   7I3* 

< 
P        n2 
U 
<      7I3 

39.6 30.0 30.4 

15.1 57.9 27.0 

10.5 20.0 69.5 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
43.1 

SELECTED 

71]*                   7t2*                   %* 

< 
P        n2 H 
U 
<       7t3 

35.7 29.2 35.0 

23.4 45.4 31.2 

22.6 29.0 48.3 

INDEX: 
47.5 

SELECTED 

7ti*                  7l2*                   7C3* 

i  "2 
u 
<     7I3 

46.3 24.2 29.4 

25.2 44.1 30.7 

24.6 23.4 52.0 

SNR = -15 dB 

Table B-ll. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features): 
MSNN Mod 1. (see App B cover page for table description) 
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INDEX: 
100 

SELECTED 

Ttl*                   JI2*                   7t3* 

■<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
100 

SELECTED 
7t]*                   7t2*                  7t3* 

<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20 dB SNR = 15 dB 

INDEX: 
100 

SELECTED 

71] *                   %2*                   7E3* 

<      7t3 

99.9 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
100 

SELECTED 

71]*                   TC2*                  7I3* 

■<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.1 0.0 99.9 

SNR = 10 dB SNR = 5 dB 

INDEX: 
99.7 

SELECTED 

Tti*                     1-2*                     7I3* 

<     7t3 

99.8 0.0 0.2 

0.2 99.8 0.0 

0.4 0.1 99.5 

SNR = 0dB 

INDEX: 
96.6 

SELECTED 
Tti*                    7t2*                    TÜ3* 

<     7t3 

94.8 2.1 3.1 

0.6 97.5 1.8 

1.1 1.5 97.4 

SNR = -5 dB 

INDEX: 
66.2 

SELECTED 
Tti*                   Tt2*                   TC3* 

u 
•<     713 

80.7 10.1 9.1 

14.7 69.5 15.9 

31.1 20.5 48.4 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
46.9 

SELECTED 
7t]*                   7t2*                   7t3* 

< 
D       Tt2 
H 
U 
<       Tt3 

37.1 41.0 21.9 

20.8 59.5 19.7 

20.2 35.8 44.0 

INDEX: 
53.4 

SELECTED 
7ti*                   7t2*                  7I3* 

<       7t3 

55.8 20.3 23.9 

33.6 42.9 23.6 

24.2 14.3 61.4 

SNR = -15 dB 

Table B-12. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features): 
MSNN Mod 1. (see App B cover page for table description) 
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INDEX: 
99.5 

SELECTED 

7ti*                   7t2*                   7I3* 

< 
P       7C2 

O 
<       7C3 

98.9 0.1 1.0 

0.1 99.9 0.0 

0.3 0.1 99.7 

INDEX: 
96.8 

SELECTED 
7t, *                   7t2*                   7t3* 

< 
g       7t2 

■<       7t3 

98.7 0.0 1.3 

0.0 96.2 3.8 

0.8 3.7 95.5 

SNR = 20 dB SNR=15dB 

INDEX: 
93.2 

SELECTED 

Tti*                   7t2*                   7I3* 

< 
P        n2 
H 
U 
•<       7t3 

89.0 0.8 10.3 

0.7 98.7 0.6 

6.7 1.5 91.9 

INDEX: 
87.1 

SELECTED 

7t,*                    7t2*                    7l3* 

< 
P        "2 
U 
<!        7t3 

82.8 5.3 11.8 

1.7 95.7 2.5 

7.4 9.8 82.8 

SNR = 10 dB SNR = 5 dB 

INDEX: 
63.2 

SELECTED 

7t,*                   7t2*                   7t3* 

1     "2 
<       7t3 

55.5 23.2 21.3 

31.1 59.2 9.7 

15.4 9.8 74.8 

INDEX: 
54.7 

SELECTED 

7t,*                   7I2*                   7t3* 

43.6 28.4 28.1 

16.5 61.6 21.9 

13.7 27.3 59.0 

SNR = 0 dB SNR = -5 dB 

INDEX: 
48.0 

SELECTED 
7t,*                    7t2*                     7I3* 

< 
P        "2 
U 
<       7t3 

56.6 19.3 24.1 

28.2 44.8 27.0 

28.9 28.7 42.4 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
42.2 

SELECTED 

7t,*                   7t,*                   7t3* 

U 
<       7t3 

45.7 24.8 29.5 

31.5 31.7 36.8 

28.5 22.2 49.3 

INDEX: 
36.5 

SELECTED 

7t,*                   7t2*                    7t3* 

i  *2 
<     7I3 

32.7 38.0 29.3 

32.9 43.2 23.9 

31.5 35.0 33.6 

SNR = -15 dB 

Table B-13. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features): 
MSNN Mod 2. (see App B cover page for table description) 
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INDEX: 
100 

SELECTED 
71]*                    7t2*                   7t3* 

-<       7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
99.4 

SELECTED 

7C]*                  7t2*                  7C3* 

< 
S3       Th 
H 
ü 
"<       Tt3 

99.3 0.4 0.3 

0.5 99.4 0.1 

0.3 0.3 99.4 

INDEX: 
90.7 

1                  SELECTED 
1         TEi*                   7T2*                   7C3* 

<       7t3 

1     93.8 3.4 2.8 

1      3.2 90.5 6.3 

6.2 5.9 87.9 

INDEX: 
53.4 

SELECTED 
Tti*                    7C2*                   7X3* 

< 

■<       7t3 

45.7 28.6 25.7 

20.9 56.5 22.6 

18.4 23.4 58.1 

INDEX: 
35.0 

SELECTED 
71] *                   7t2*                   7C3* 

U 
■<       7t3 

34.3 31.8 33.8 

30.7 36.4 32.9 

33.3 32.3 34.4 

INDEX: 
99.9 

SELECTED 
7ti*                   7I2*                  %* 

1     ^ 
U 
■<     7t3 

99.9 0.0 0.1 

0.0 99.8 0.2 

0.1 0.0 99.9 

SNR =15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

INDEX: 
98.2 

SELECTED 

Tti*                 7E2*                 %* 

<       7I3 

98.3 0.9 0.7 

0.6 98.4 1.0 

1.1 1.0 97.8 

INDEX: 
67.9 

SELECTED 

Til*                   7t2*                   7C3* 

u 
•<     7C3 

61.8 20.2 18.0 

17.2 68.8 13.9 

14.9 12.2 73.0 

INDEX: 
42.0 

SELECTED 
7tj*                   7C2*                   7t3* 

<     7C3 

45.2 30.5 24.3 

31.3 40.9 27.8 

29.8 30.4 39.8 

Table B-14. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features): MSNN 
Mod 2. (see App B cover page for table description) 
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INDEX: 
100 

SELECTED 
71,*                   7t2*                   7I3* 

< 
P       712 
H 
U 
<;    7t3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

INDEX: 
99.9 

SELECTED 

TCj*                 7t2*                 %* 

< % 

99.8 0.0 0.2 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20 dB SNR = 15 dB 

INDEX: 
99.7 

SELECTED 

Tti*                   7t2*                   7C3* 

1     *2 
99.7 0.3 0.0 

0.2 99.7 0.0 

0.2 0.0 99.8 

SNR = 10 dB 

INDEX: 
99.2 

SELECTED 

TCj*                   7l2*                   7t3* 

99.5 0.3 0.1 

0.1 98.7 1.2 

0.0 0.4 99.5 

INDEX: 
99.0 

SELECTED 

Tti*                   JI2*                   7l3* 

J     %1 

U 
<     % 

98.4 1.1 0.4 

0.5 99.2 0.3 

0.4 0.3 99.3 

SNR = 5 dB 

INDEX: 
95.6 

SELECTED 

7Ci*                   7t2*                   Hi* 

< 
P        "2 
ü 
<       7t3 

95.5 1.8 2.6 

1.7 96.3 2.0 

2.4 2.7 94.9 

SNR = 0dB SNR = -5 dB 

INDEX: 
71.9 

SELECTED 

7ti*                   7l2*                   JI3* 

73.2 12.0 14.8 

11.6 74.2 14.2 

15.5 16.2 68.2 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
36.3 

SELECTED 
71, *                   7t2*                   7t3* 

|     "2 

<     7i3 

36.9 35.2 28.0 

32.9 39.3 27.8 

32.8 34.6 32.7 

INDEX: 
47.4 

SELECTED 

Tti*                    7t2*                    ^3* 

1     ^ 
<     Ji3 

43.9 27.8 28.3 

24.5 49.1 26.4 

22.6 27.2 50.2 

SNR = -15 dB 

Table B-15. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features): 
MSNN Mod 2. (see App B cover page for table description) 
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INDEX: 
98.5 

SELECTED 

JIl*                   7t2*                   Jtl* 

i *2 
< 7i3 

99.6 0.3 0.0 

0.6 98.7 0.7 

0.2 2.5 97.3 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
88.0 

SELECTED 
*ci*            n2*            Ji,* 

< 
H 
O 
<!      7I3 

80.2 7.3 12.5 

1.0 97.7 1.3 

7.4 6.4 86.1 

INDEX: 
61.4 

SELECTED 
%l*                   Tt2*                   JI3* 

1     "2 
<       7t3 

51.6 21.7 26.7 

28.0 55.9 16.1 

13.7 9.4 76.9 

INDEX: 
43.6 

1                  SELECTED 

1     Jii*            n2*            Tt3* 

< 
£   "2 

■<   jt3 

1     48.0 28.7 23.3 

1     27.3 45.8 26.9 

28.3 34.7 37.0 

INDEX: 
36.0 

SELECTED 

Jtl*                   7l2*                   7I3* 

< 
g        7I2 

29.7 39.9 30.3 

31.5 45.2 23.3 

28.8 38.1 33.1 

INDEX: 
96.0 

SELECTED 

Ttl*                 7t2*                 JI3* 

l        "2 
u 
<!      7C3 

97.1 0.0 2.9 

0.0 96.5 3.5 

0.7 4.9 94.4 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

INDEX: 
79.8 

SELECTED 
JIl*                   7I2*                   Tfcj* 

74.1 11.9 14.0 

8.8 87.4 3.9 

8.4 13.7 77.9 

INDEX: 
49.4 

SELECTED 
Ttl*                 TC2*                 %* 

£        "2 
<       7t3 

46.2 25.4 28.4 

23.2 52.2 24.6 

20.6 29.5 49.9 

INDEX: 
40.2 

SELECTED 

7tl*                   %2*                  7t3* 

J     7l1 

|        *2 

u 
<!      7i3 

40.0 28.4 31.6 

29.7 34.5 35.8 

30.8 23.3 46.0 

Table B-16. Confusion Matrices for Simulated Feature Trials (Three-Class, Three-Features): 
MSNN Mod 3. (see App B cover page for table description) 
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INDEX: 
99.2 

SELECTED 

Tt,*                   7I2*                   7t3* 

|        *2 

u 
•<    rc3 

98.1 0.0 1.9 

0.3 99.7 0.0 

0.1 0.0 99.9 

INDEX: 
99.2 

SELECTED 

7t,*                   7I2*                   7t3* 

i "2 
< % 

100 0.0 0.0 

1.1 98.9 0.0 

0.6 0.6 98.8 

SNR = 20 dB SNR = 15 dB 

INDEX: 
97.1 

SELECTED 

Tti*                   7t2*                   %* 

< 
P        "2 H 
U 

97.7 2.1 0.2 

1.6 95.9 2.5 

1.1 1.2 97.7 

SNR =10 dB 

INDEX: 
79.0 

SELECTED 

7t,*                    7I2*                   7t3* 

P       7C2 

ü 

84.5 6.7 8.8 

9.4 79.9 10.6 

15.4 12.1 72.4 

INDEX: 
90.5 

SELECTED 

7t,*                  7t2*                 7l3* 

< 
P        "2 H 
U 
<    7t3 

92.6 2.2 5.2 

4.8 93.1 2.1 

8.6 5.6 85.8 

SNR = 5 dB 

INDEX: 
59.5 

SELECTED 

Tti*                   7t2*                   7t3* 

1     "2 
<     TC3 

51.4 20.5 28.1 

21.2 57.4 21.4 

17.5 12.6 69.8 

SNR = 0 dB SNR = -5 dB 

INDEX: 
46.0 

SELECTED 

71, *                   7t2*                   7X3* 

< 
P       %2 H 
U 
■<       7t3 

39.5 33.1 27.3 

24.1 50.4 25.4 

24.5 27.3 48.2 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
34.7 

SELECTED 

7t,*                   7t2*                   7I3* 

< 
P        %2 H 
ü 
<      JI3 

29.1 38.6 32.2 

26.9 41.0 32.1 

28.4 37.6 34.1 

INDEX: 
39.2 

SELECTED 
7t,*                   7t2*                   7t3* 

< 
P        "2 H 
U 
<       7t3 

39.4 36.6 23.9 

29.8 43.5 26.7 

29.3 35.9 34.8 

SNR = -15 dB 

Table B-17. Confusion Matrices for Simulated Feature Trials (Three-Class, Ten-Features): 
MSNN Mod 3. (see App B cover page for table description) 
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INDEX: 
100 

SELECTED 
Tti*                  7t2*                  7t3* 

i  *2 
<       7C3 

100 0.0 0.0 

0.0 100 0.0 

0.0 0.0 100 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
98.4 

SELECTED 

Tti*                   7t2*                    7C3* 

|        "2 

u 
<       7t3 

97.2 0.7 2.2 

1.4 98.1 0.5 

0.0 0.1 99.9 

INDEX: 
91.5 

SELECTED 
Tti*                  7t2*                  7C3* 

■<        7I3 

89.4 4.4 6.3 

4.2 93.5 2.3 

4.9 3.6 91.5 

INDEX: 
56.7 

SELECTED                  1 
Tti*                   7C2*                   7C3*         | 

Ö       7t2 

■<       7t3 

60.1 18.6 21.2 

22.2 59.5 18.3     1 

25.9 23.6 50.5     | 

INDEX: 
36.1 

SELECTED 
Tti*                   7t2*                   7C3* 

|        *2 

u 
■<        7t3 

35.3 37.0 27.6 

32.4 41.4 26.2 

32.4 36.1 31.5 

INDEX: 
98.7 

SELECTED                 1 
7Ii*                  Ttz*                  7t3*        1 

|        "2 

<       TI3 

99.8 0.0 0.2 

3.2 96.2 0.6 

0.0 0.0 100     I 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

INDEX: 
97.7 

SELECTED 

7t] *                 7t2*                 7C3* 

i *2 
■<       7t3 

96.9 2.1 1.0 

1.7 97.2 1.1 

0.6 0.2 99.1 

INDEX: 
78.4 

SELECTED                 1 
Tti*                  Tt2*                   7t3*        1 

l        *2 
u 
<!        7t3 

79.4 7.2 13.4 

9.9 77.0 13.1 

13.0 8.3 78.6     1 

INDEX: 
43.8 

SELECTED 
Tti*                   7I2*                   7t3* 

i  "2 
-<        7C3 

44.7 27.3 28.0 

30.3 42.0 27.7 

28.3 27.1 44.6 

Table B-18. Confusion Matrices for Simulated Feature Trials (Three-Class, Fifty-Features): 
MSNN Mod 3. (see App B cover page for table description) 
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INDEX: 
75.2 

SELECTED 

TCi*                   7C2*                   7Ü3* 

H-     * 

u 
<       7C3 

61.8 38.1 0.0 

35.9 63.8 0.4 

0.0 0.0 100 

SNR = 20 dB 

SNR=10dB 

SNR = 0 dB 

Rxl 

SNR = -20 dB 

INDEX: 
33.3 

SELECTED 

TCj*                   7t2*                   7t3* 

u 
<    7i3 

33.5 30.0 36.5 

34.3 29.8 35.8 

33.4 30.0 36.6 

INDEX: 
33.3 

SELECTED 
71,*                   7t2*                   7C3* 

< 
P       7C2 

O 
<      % 

37.4 30.9 31.7 

36.7 31.6 31.7 

38.3 30.8 30.9 

INDEX: 
71.3 

SELECTED 

7Ci*                   7t2*                   7t3* 

< 
P       712 

u 
•<       7C3 

57.4 42.5 0.1 

43.1 56.5 0.4 

0.0 0.0 100 

INDEX: 
67.9 

SELECTED 

7t!*                  7t2*                  7t3* 

H-           "> 

< 
g        7I2 

U    - 
<       7t3 

54.2 44.8 1.0 

47.5 49.8 2.7 

0.1 0.2 99.7 

INDEX: 
44.6 

SELECTED 

TCj*                   7t2*                   %* 

H-           * 

<       7t3 

35.9 35.7 28.4 

34.8 35.2 30.0 

18.6 18.7 62.6 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

No Noise 

INDEX: 
60.2 

SELECTED 

TEi*                 7C2*                 TC3* 

<       7t3 

44.0 40.6 15.4 

41.0 42.9 16.1 

4.1 2.3 93.6 

INDEX: 
35.9 

SELECTED 

7ti*                    7l2*                    7C3* 

HH           "> 

< 
g       7C2 

<       7t3 

34.0 30.6 35.4 

33.2 33.2 33.7 

30.9 28.6 40.5 

INDEX: 
33.6 

SELECTED 
71;*                       7t2*                       7C3* 

HH           "> 

l        "2 
u 
■<        7C3 

31.7 32.7 35.6 

32.1 32.3 35.6 

31.1 32.2 36.7 

INDEX: 
33.3 

SELECTED 

7Ci*                   7t2*                  7Ü3* 

u 
<       7t3 

100 0.0 0.0 

100 0.0 0.0 

100 0.0 0.0 

Table B-19. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features): 
Statistical Classifier, (see App B cover page for table description) 
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INDEX: 
79.4 

1                  SELECTED 

1         Hl*                   7C2*                   7l3* 

V 
<       7l3 

1     68.0 32.0 0.0 

1     29.9 70.1 0.0 

0.0 0.0 100 

SNR = 20dB 

SNR = 10 dB 

SNR = 0dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
70.9 

SELECTED 

7tl*                   7t2*                   7t3* 

<       7I3 

56.4 43.6 0.1 

43.3 56.5 0.2 

0.1 0.2 99.8 

INDEX: 
50.4 

SELECTED 
-iii*             iti*             rc3* 

< 

u 
■<        7I3 

40.3 42.0 17.7 

38.7 43.2 18.1 

13.8 18.4 67.8 

INDEX: 
33.6 

SELECTED 

Jtl*                   7C2*                    7I3* 

ü 
■<        7C3 

36.2 32.3 31.5 

36.4 30.9 32.7 

34.0 32.2 33.7 

INDEX: 
33.3 

SELECTED 
Ttl*                   7l2*                   7I3* 

< 
S3       7t2 
H 
U 
•<        7C3 

34.5 33.2 32.2 

34.8 34.1 31.1 

34.6 34.0 31.4 

INDEX: 
74.7 

SELECTED 
7ti*                   Tt2*                   7E3* 

U 

60.0 40.0 0.0 

35.6 64.3 0.0 

0.0 0.0 100 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

No Noise 

INDEX: 
65.7 

SELECTED 

Ttl*                 7t2*                 7t3* 

•<       7t3 

51.2 45.5 3.3 

44.5 50.6 4.9 

1.8 2.9 95.3 

INDEX: 
37.0 

SELECTED 
Jtl*                    TC2*                    Jt3* 

<       7t3 

34.5 34.5 31.0 

35.4 34.1 30.6 

29.5 28.0 42.4 

INDEX: 
33.3 

SELECTED 
7ti*                   Jt2*                   7I3* 

u 
■<       7I3 

33.7 32.0 34.4 

34.0 32.1 33.9 

33.0 32.8 . 34.2 

INDEX: 
33.3 

SELECTED 
Tti*                    TC2*                    %* 

|        "2 
u 
<!      7t3 

40.0 0.0 60.0 

40.0 0.0 60.0 

40.0 0.0 60.0 

Table B-20. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features): 
Statistical Classifier, (see App B cover page for table description) 
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INDEX: 
78.8 

SELECTED 

7Ii*                   TC2*                   TC3* 

< 
g       7t2 

<      7I3 

68.0 32.0 0.0 

31.7 68.3 0.0 

0.0 0.0 100 

INDEX: 
75.4 

SELECTED 

7lj*                  7t2*                   7E3* 

i *2 
65.5 34.3 0.2 

39.2 60.7 0.1 

0.0 0.0 100 

SNR = 20dB SNR =15 dB 

INDEX: 
73.0 

SELECTED 

.TCj*                   TC2*                   7C3* 

<  713 

61.9 37.5 0.6 

41.7 57.7 0.6 

0.4 0.1 99.4 

INDEX: 
65.9 

SELECTED 

Tti*                 TE2*                 7t3* 

u 
•<     n3 

51.4 45.8 2.8 

42.7 53.6 3.7 

3.0 4.3 92.7 

SNR=10dB SNR = 5dB 

INDEX: 
51.7 

SELECTED 

Ttl*                   7t2*                   Tts* 

43.0 42.6 14.5 

42.7 43.5 13.8 

15.1 16.2 68.7 

INDEX: 
38.3 

SELECTED 

TCl*                  7l2*                   TC3* 

<  TC3 

37.1 37.0 26.0 

37.5 35.9 26.6 

27.8 30.3 41.9 

SNR = 0dB SNR = -5 dB 

INDEX: 
34.7 

SELECTED 
7li*                   7t2*                   Tt3* 

<  713 

34.2 31.6 34.3 

33.0 32.3 34.7 

31.3 31.2 37.5 

SNR = -10 dB 

INDEX: 
33.1 

SELECTED 

7tl*                     7l2*                     TC3* 

<!        7C3 

31.6 34.7 33.7 

31.9 35.9 32.2 

32.3 35.9 31.7 

INDEX: 
33.5 

SELECTED 
7t, *                  7I2*                   7C3* 

l        *2 
O 
<       TC3 

31.6 33.7 34.7 

32.0 33.8 34.2 

30.8 34.0 35.2 

SNR = -15 dB 

INDEX: 
57.0 

SELECTED 

Ttl*                   TC2*                   7t3* 

<  Tc3 

45.7 54.3 0.0 

54.7 45.3 0.0 

0.0 20.0 80.0 

SNR = -20 dB No Noise 

Table B-21. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features): 
Statistical Classifier, (see App B cover page for table description) 
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INDEX: 
78.7 

SELECTED 

Ttl*                   7I2*                   7T3* 

i  *2 
u 
<    7I3 

65.6 13.6 4.9 

11.0 71.4 7.9 

0.4 0.6 99.0 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
40.6 

SELECTED 
71] *                   7t2*                   7I3* 

i n2 
<  713 

24.0 23.6 31.3 

22.9 25.0 31.7 

12.4 12.2 72.8 

INDEX: 
30.1 

SELECTED 
71,*                   7t2*                   7l3* 

-<     Tt3 

27.7 34.2 26.4 

28.1 34.8 25.9 

27.2 24.6 27.9 

INDEX: 
29.6 

SELECTED 
7t!*                     7l2*                     7t3* 

3        7T2 

U 
-0      7l3 

15.1 24.0 50.1 

15.6 23.4 50.0 

15.6 23.2 50.4 

INDEX: 
71.7 

SELECTED 

7ti*                    7I2*                    7I3* 

i "2 
63.3 16.0 9.0 

23.8 53.3 10.8 

0.5 1.2 98.3 

INDEX: 
63.8 

SELECTED 

7t!*                  7t2*                  7t3* 

< 
ö       7I2 

U 
■<     Jl3 

47.9 26.4 14.4 

27.6 47.0 15.2 

1.1 2.3 96.6 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

No Noise 

INDEX: 
50.7 

SELECTED 

7ti*                   7t2*                   TE3* 

l        "2 
■<«       7t3 

27.7 25.6 35.3 

22.9 31.0 35.2 

2.9 3.6 93.4 

INDEX: 
33.1 

SELECTED 
Jti*             712*             TI3* 

i "2 
u 
•<       7t3 

25.0 29.8 32.6 

24.5 29.9 32.8 

23.7 25.3 44.2 

INDEX: 
31.2 

SELECTED 

Ttj*                   7l2*                   7l3* 

l        "2 
■<     7C3 

25.0 20.3 47.6 

24.1 20.2 48.9 

24.1 20.7 48.5 

INDEX: 
92.9 

SELECTED 
7ii*             jr2*            %* 

|        "2 

u 
■<!     7I3 

91.4 5.2 2.6 

7.0 87.2 4.6 

0.1 0.0 99.9 

Table B-22. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features): 
Perceptron. (see App B cover page for table description) 
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INDEX: 
74.2 

SELECTED 

111*                    Kl*                    n3* 

u 
<    7l3 

55.4 19.4 5.3 

11.7 69.0 5.9 

0.1 1.8 98.1 

SNR = 20dB 

SNR = 10 dB 

SNR = 0dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
61.4 

SELECTED 

Jii*            n2*            %* 

< 
g       7t2 

ü 
<      7l3 

24.0 43.5 16.3 

8.1 66.0 14.4 

0.4 5.4 94.2 

INDEX: 
40.0 

SELECTED 

jii*            7t2*            n-i* 

<       7t3 

28.5 28.5 21.3 

26.5 30.5 22.4 

14.8 20.5 61.1 

INDEX: 
28.6 

SELECTED 

7li*                   Jt2*                   t3* 

< 

<       7t3 

18.4 21.9 44.1 

18.5 21.7 44.5 

18.6 21.5 45.7 

INDEX: 
30.4 

SELECTED 

7t,*                   7t2*                   JI3* 

<  % 

22.8 27.8 40.7 

23.0 27.7 40.3 

22.8 27.7 40.6 

INDEX: 
69.3 

SELECTED 

71,*                7l2*                n3* 

u 
-<       7t3 

62.6 16.1 9.8 

29.1  , 46.4 14.0 

0.2 1.1 98.7 

SNR=15dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

No Noise 

INDEX: 
51.8 

SELECTED 
7t,*                  7t2*                  7t3* 

< 
g        %2 
U 

39.3 20.5 30.9 

31.1 26.3 33.9 

4.1 5.9 89.9 

INDEX: 
30.3 

SELECTED 

7t,*                  7t2*                  7t3* 

<     n3 

18.5 19.1 43.3 

19.0 19.2 43.2 

18.0 16.2 53.1 

INDEX: 
30.4 

SELECTED 
7t! *                    7t,*                    7t3* 

g       7t2 

•<       7t3 

35.7 24.9 30.4 

35.6 25.2 30.3 

36.0 25.0 30.4 

INDEX: 
87.7 

SELECTED 
1        7tj*                  7t2*                  7t3* 

!     "2 

■<        7t3 

79.5 10.0 4.5 

I      6.6 83.9 5.4 

1      0.0 0.2 99.8 

Table B-23. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features): 
Perceptron. (see App B cover page for table description) 
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INDEX: 
55.0 

SELECTED 

Ttl*                   7I2*                    Jl3* 

|        *2 

<     7t3 

39.5 7.8 0.8 

10.3 30.2 0.4 

4.8 0 95.2 

SNR = 20 dB 

INDEX: 
56.1 

SELECTED 

71]*                   7I2*                    7l3* 

u 
<      7t3 

24.6 29.7 38.6 

13.6 46.1 35.0 

1.1 1.8 97.1 

SNR = 10 dB 

INDEX: 
41.2 

1                  SELECTED 

1         JCi*                   7I2*                   7k)* 

< 

u 
•<       7t3 

|     30.6 23.3 37.5 

1      30.2 23.8 37.3 

1      15.5 12.5 69.3 

SNR = 0dB 

INDEX: 
30.4 

SELECTED 
TCj*                  7tz*                  7C,* 

o 
<       7t3 

10.5 28.2 51.3 

10.5 28.7 51.0 

10.4 28.7 51.8 

SNR = -10 dB 

1 INDEX: 
|     29.9 

SELECTED 

TCi*                   7l2*                    7I3* 

i %2 
ü 
■<        7I3 

11.4 37.1 40.9 

11.0 37.4 41.0 

11.2 37.2 40.9 

SNR = -20 dB 

INDEX: 
58.2 

SELECTED 
7li*                   712*                   TC3* 

4  ni 47.1 9.9 8.0 

25.6 29.7 8.3 

1.6 0.6 97.8 

SNR=15dB 

INDEX: 
52.3 

SELECTED 

TCi*                 7t2*                 7t3* 

i "2 
-<      7C3 

24.1 38.2 22.4 

18.5 46.1 21.4 

3.1 9.7 86.7 

SNR = 5dB 

INDEX: 
29.6 

SELECTED                 I 
TCi*                   71^*                   7I3*        | 

<       7l3 

10.6 30.5 42.2 

10.5 30.8 42.5     1 

8.6 32.3 47.5     | 

SNR = -5 dB 

INDEX: 
27.8 

SELECTED 
7Ci*                    712*                    7t3*         | 

i  *2 
-<       7t3 

21.4 23.9 37.2     1 

21.3 23.9 37.2     1 

21.3 23.5 37.9     | 

SNR = -15 dB 

INDEX: 
83.8 

SELECTED 
71] *                   7C2*                   7t3* 

<       7C3 

74.1 4.1 19.5 

7.3 78.1 6.2 

0.7 0.0 99.3 

No Noise 

Table B-24. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features): 
Perceptron. (see App B cover page for table description) 
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INDEX: 
89.0 

SELECTED 

7t,*                   7t2*                   %* 

U 
<       7I3 

86.1 13.9 0.0 

19.1 80.9 0.0 

0.0 0.0 100 

SNR = 20dB 

SNR=10dB 

SNR = 0dB 

SNR = -10 dB 

INDEX: 
33.7 

SELECTED 

7ti*                   7t2*                   %* 

< 
P        Jl2 

U 
<       TC3 

31.7 33.7 34.6 

32.4 34.1 33.4 

31.8 32.7 35.5 

SNR = -20 dB 

INDEX: 
82.6 

SELECTED 

7ti*                 7t2*                 7t3* 

< 
g       712 

<       7C3 

75.0 25.0 0.0 

27.0 73.0 0.0 

0.1 0.1 99.8 

INDEX: 
76.1 

SELECTED 

7t!*                   7t2*                   7t3* 

< 
D       7C2 
H 
<J 
<       7I3 

67.7 32.3 0.1 

38.7 61.2 0.1 

0.2 0.4 99.5 

INDEX: 
56.3 

SELECTED 
7tj*                   7t2*                   7I3* 

U 
<!      7I3 

44.0 43.7 12.3 

42.1 44.9 13.0 

10.6 9.4 80.0 

INDEX: 
34.7 

SELECTED 
7ti*                   7t2*                   7t3* 

3       7I2 

U 
■<       7t3 

33.4 34.4 32.2 

34.1 34.8 31.1 

31.5 32.7 35.8 

SNR = 15 dB 

INDEX: 
70.4 

SELECTED 

7t] *                  7t2*                  7I3* 

< 
5       7t2 

U 
<       7t3 

55.4 42.9 1.7 

38.5 58.8 2.6 

1.1 1.9 96.9 

SNR = 5 dB 

INDEX: 
42.5 

SELECTED 

7ti*                  7t2*                  TC3* 

i ^ 
<       7t3 

35.7 37.0 27.2 

34.5 36.7 28.9 

21.3 23.5 55.2 

SNR = -5 dB 

INDEX: 
33.5 

SELECTED 
Tti*                  712*                  7t3* 

35.0 34.6 30.4 

34.4 35.0 30.6 

35.2 34.4 30.4 

SNR = -15 dB 

INDEX: 
94.8 

SELECTED 

7t]*                  7l2*                  TC3* 

< 

<       Tt3 

93.7 6.3 0.0 

9.2 90.8 0.0 

0.0 0.1 99.9 

No Noise 

Table B-25. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features): 
MSNN. (see App B cover page for table description) 
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INDEX: 
86.0 

SELECTED 
Tlj*                     712*                     7I3* 

i *2 
<    % 

76.9 23.1 0.0 

18.9 81.1 0.0 

0.0 0.0 100 

SNR = 20dB 

SNR=10dB 

SNR = 0 dB 

SNR = -10dB 

SNR = -20 dB 

INDEX: 
34.8 

SELECTED 
7Il*                   JI2*                   7I3* 

l        "2 
u 
•<    7I3 

34.4 32.4 33.2 

34.4 33.1 32.5 

32.0 31.1 37.0 

INDEX: 
33.1 

SELECTED 

7ll*                   TC2*                   %* 

l        *2 
u 

36.8 32.9 30.3 

37.1 32.8 30.1 

36.5 33.9 29.7 

INDEX: 
81.5 

SELECTED 

Jii*            7t2*            %* 

l        *2 
72.6 27.4 0.0 

27.9 72.1 0.0 

0.0 0.1 99.9 

INDEX: 
77.7 

SELECTED 

71]*                   7Ü2*                   %* 

l        "2 
u 
«Ü       7t3 

70.4 29.4 0.2 

36.7 63.0 0.3 

0.2 0.1 99.7 

INDEX: 
56.2 

SELECTED 

Jtl*                   7t2*                   7l3* 

l        "2 
u 
<       7t3 

44.5 42.2 13.4 

41.6 44.9 13.5 

10.4 10.5 79.2 

SNR=15dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

No Noise 

INDEX: 
69.8 

SELECTED 

Jii*             7x2*             %* 

< 
O       7l2 

ü 
<      7I3 

57.7 41.4 1.0 

41.8 56.8 1.5 

2.4 2.8 94.8 

INDEX: 
41.7 

SELECTED 
7t]*                   7I2*                  7t3* 

l        "2 
36.5 37.2 26.3 

35.5 36.6 28.0 

22.6 25.5 51.9 

INDEX: 
33.4 

SELECTED 
Tti*                   TC2*                  7t3* 

<        7t3 

31.6 33.8 34.6 

32.3 32.8 34.9 

32.7 31.4 35.8 

INDEX: 
93.8 

SELECTED 
TCi*                   7t2*                  %* 

l        "2 
<!      7I3 

92.5 7.5 0.0 

11.1 88.9 0.0 

0.0 0.0 100 

Table B-26. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features): 
MSNN. (see App B cover page for table description) 
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INDEX: 
81.8 

SELECTED 

7li*                   7t2*                   B3* 

75.7 24.2 0.1 

30.3 69.6 0.0 

0.0 0.0 100 

INDEX: 
78.7 

SELECTED 

Jtl*                  7t2*                   B3* 

u 
•<        7l3 

68.5 31.4 0.1 

32.2 67.7 0.0 

0.2 0.0 99.8 

SNR = 20 dB SNR=15dB 

INDEX: 
75.8 

SELECTED 

7t) *                   Jt2*                   7I3* 

< 
P        7t2 H 

63.6 35.9 0.5 

34.4 65.2 0.4 

0.5 0.7 98.7 

INDEX: 
68.0 

SELECTED 

7li*                  7t2*                   B3* 

<!      B3 

55.2 40.4 4.4 

39.6 56.2 4.2 

3.1 4.3 92.6 

SNR = 10 dB SNR = 5 dB 

INDEX: 
55.3 

SELECTED 

7li*                   7l2*                   B3* 

O 
•<        7C3 

46.9 37.9 15.2 

42.9 41.4 15.8 

10.5 12.0 77.5 

INDEX: 
41.1 

SELECTED 
7tj*                  7t2*                   7C3* 

£ "2 
34.7 32.8 32.5 

34.6 35.1 30.3 

23.4 23.1 53.5 

SNR = 0 dB SNR = -5 dB 

INDEX: 
34.5 

SELECTED 
Bl*                   B2*                   B3* 

< 
P        "2 

<       B3 

30.1 35.8 34.1 

29.0 36.1 34.9 

29.0 33.6 37.4 

SNR = -10 dB 

INDEX: 
34.2 

SELECTED 

Bi*                  B2*                   B3* 

l        "2 
<        7C3 

30.7 36.2 33.2 

28.7 39.2 32.1 

30.7 36.4 32.9 

INDEX: 
33.2 

SELECTED 
Bi*                   B2*                   B3* 

< 
P        "2 
Ei 

<      B3 

36.6 29.0 34.4 

37.7 29.5 32.8 

36.4 30.3 33.3 

SNR = -15 dB 

INDEX: 
94.3 

SELECTED 
Bi*                  B2*                   B3* 

1     ^ 
U 
<       B3 

93.6 6.3 0.0 

10.6 89.4 0.0 

0.0 0.0 100 

SNR = -20 dB No Noise 

Table B-27. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features): 
MSNN. (see App B cover page for table description) 
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INDEX: 
72.9 

SELECTED                  1 
Tti*                    7t2*                   7C,*         | 

•< 

<!       7t3 

58.7 40.8 0.5   ~| 

36.5 63.3 0.2      1 

2.0 1.2 96.8     | 

SNR = 20 dB 

INDEX: 
64.1 

SELECTED 

TCl*                    7t2*                   71,* 

i *2 
u 
<       7C3 

47.3 52.6 0.0 

38.6 61.3 0.1 

4.7 11.5 83.8 

SNR = 10 dB 

INDEX: 
43.9 

SELECTED 
Tti*                    7t2*                   7t,* 

u 
<     7t3 

36.4 42.8 20.8 

36.2 42.8 21.0 

22.5 25.0 52.5 

SNR = 0 dB 

INDEX: 
33.4 

SELECTED 
Tti*                   7I2*                   7t,* 

U 
■<       7t3 

34.4 31.5 34.1 

34.9 31.4 33.7 

35.7 30.0 34.3 

SNR = -10 dB 

INDEX: 
33.2 

SELECTED 
7ti*                    7I2*                   7t,* 

g       7t2 

u 
•<       7t3 

33.4 32.2 34.3 

34.4 32.2 33.4 

33.6 32.3 34.1 

SNR = -20 dB 

INDEX: 
68.7 

SELECTED 
7tl*                   7t2*                   7t,* 

u 
<       7I3 

53.9 46.0 0.1 

42.4 57.6 0.0 

4.2 1.2 94.5 

SNR=15dB 

INDEX: 
55.3 

SELECTED 

TCl*                  TC2*                 7t,* 

l        "2 
<       7t3 

47.6 49.0 3.4 

45.7 50.2 4.1 

14.5 17.4 68.2 

SNR = 5 dB 

SNR = -5 dB 

1 INDEX: 
|     35.0 

SELECTED                 1 
Tti*                   7t2*                   7t,*        | 

i %2 
u 
<       7t3 

32.4 37.1 30.5     | 

32.8 37.2 30.0     1 

29.4 35.3 35.3     | 

INDEX: 
33.4 

SELECTED                 1 
Tti*                   Tt2*                   7t,*        | 

< 
g       7t2 

u 
<        7t3 

33.6 29.7 36.6   1 

33.4 29.9 36.7     1 

33.6 29.7 36.7     | 

SNR = -15 dB 

No Noise 

INDEX: 
63.0 

SELECTED 
TCi*                   Tt2*                   7t,* 

u 
<       7t3 

3.7 82.6 13.7 

0.9 85.4 13.7 

0.0 0.2 99.8 

Table B-28. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features): 
MSNN Mod 1. (see App B cover page for table description) 
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INDEX: 
71.4 

SELECTED 
jtj*              n2*              7C3* 

< 
3       1t2 

U 
«s!       7t3 

48.1 51.5 0.3 

31.3 68.2 0.4 

1.3 0.7 97.9 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
66.3 

SELECTED 

7t]*                   JI2*                   7t3* 

O 
<     7i3 

46.8 52.7 0.4 

34.2 65.3 0.5 

5.2 8.1 86.7 

INDEX: 
33.3 

SELECTED 
71,*                    7[2*                     7:3* 

<    7t3 

32.9 32.4 34.6 

33.3 32.3 34.4 

32.6 32.6 34.8 

INDEX: 
68.9 

SELECTED 
7Cj*                 7C2*                 7C3* 

50.5 49.4 0.1 

38.1 61.8 0.1 

3.4 2.1 94.5 

INDEX: 
43.6 

SELECTED 

7Cj*                   7l2*                   7C3* 

1     "2 
39.4 42.6 17.9 

39.5 42.8 17.7 

26.2 25.1 48.7 

INDEX: 
34.0 

SELECTED 
71,*                   7t2*                   7t3* 

< 
P       7l2 

U 
<!       7t3 

32.3 33.0 34.7 

31.7 33.7 34.6 

31.2 32.6 36.1 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

No Noise 

INDEX: 
57.7 

SELECTED 
7C]*                  7t2*                   7t3* 

1  "2 
u 
<       7t3 

49.1 48.6 2.4 

47.0 50.2 2.8 

11.9 14.3 73.9 

INDEX: 
35.5 

SELECTED 
7t, *                  7I2*                   7X3* 

< 
P       7C2 

U 
<!        7t3 

33.4 31.5 35.1 

32.6 32.5 34.9 

30.2 29.3 40.5 

INDEX: 
33.4 

SELECTED 
7tj*                  7I2*                   7I3* 

£        "2 
u 

33.5 33.5 33.0 

33.9 33.4 32.7 

33.2 33.7 33.1 

INDEX: 
64.4 

SELECTED 
7t]*                  7t2*                   7C3* 

0.0 90.6 9.4 

0.0 93.1 6.9 

0.0 0.0 100 

Table B-29. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features): 
MSNN Mod 1. (see App B cover page for table description) 
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INDEX: 
72.2 

SELECTED 

«1*                     "2*                     Tfc* 

< 
O        7l2 
H 
U 
-<     rc3 

72.2 26.6 1.2 

53.1 46.4 0.6 

1.6 0.6 97.8 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

INDEX: 
65.1 

SELECTED 

7tl*                    7t2*                   TC3* 

<     % 

55.6 44.3 0.1 

44.4 55.6 0.0 

8.1 7.9 84.1 

SNR = -20 dB 

INDEX: 
47.7 

SELECTED 
Ttj*                    7I2*                   7I3* 

<       7I3 

41.4 41.0 17.6 

39.5 42.0 18.6 

20.0 20.1 59.9 

INDEX: 
33.6 

SELECTED 
7tl*                    712*                   7l3* 

< 

-<        7t3 

34.2 32.9 32.9 

33.5 33.4 33.1 

33.7 33.2 33.2 

INDEX: 
33.3 

SELECTED 
7tl*                    7I2*                   7C3* 

J     %l 

|        "2 

o 
<     7t3 

29.7 35.6 34.7 

29.7 35.6 34.7 

30.4 35.1 34.5 

INDEX: 
71.2 

SELECTED                 1 

TIi*                  7E2*                   7C3*        1 

i * 
<       Tt3 

59.1 40.3 0.6   I 

41.9 57.8 0.4      1 

1.6 1.6 96.9     | 

SNR = 15 dB 

SNR = 5dB 

SNR = -5 dB 

SNR = -15 dB 

INDEX: 
57.9 

SELECTED 

7Ii*                  Tt2*                 7I3* 

|        "2 

48.1 50.8 1.1 

41.1 57.0 1.9 

11.2 20.2 68.7 

No Noise 

INDEX: 
35.7 

SELECTED                 1 

«i*            n2*            7i3*     1 

<    n3 

37.6 32.4 30.1 

37.7 32.6 29.7     | 

30.8 32.2 37.0     | 

INDEX: 
33.5 

SELECTED 
7ti*                   7t2*                   7l3* 

<        1*3 

32.8 31.3 35.8 

32.6 31.4 36.1 

33.1 30.6 36.3 

INDEX: 
45.1 

SELECTED 

Jti*             n2*             %* 

i * 
<       7C3 

1.9 16.5 81.6 

0.7 33.3 66.0 

0.0 0.0 100 

Table B-30. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features): 
MSNN Mod 1. (see App B cover page for table description) 
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INDEX: 
87.3 

SELECTED 
7t,*                   7I2*                   7t3* 

|        "2 

<!       7I3 

79.5 20.5 0.0 

16.6 83.0 0.3 

0.3 0.3 99.4 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
74.0 

SELECTED 

7t,*                   71,*                   7I3* 

< 
P.        "2 
U 
<      7t3 

61.8 37.9 0.3 

37.8 62.0 0.2 

0.9 0.8 98.4 

INDEX: 
55.8 

SELECTED 

7t,*                  7t,*                  7t3* 

< 
38.7 46.8 14.4 

37.9 47.0 15.1 

9.8 8.5 81.8 

INDEX: 
34.0 

SELECTED 
7t,*                   7t2*                   7t3* 

< 
P       7t2 

U 
<       7t3 

31.2 34.5 34.3 

32.3 34.2 33.5 

30.0 33.4 36.6 

INDEX: 
33.5 

SELECTED 

7t,*                   7I2*                   7t3* 

< 
P       7t2 
H 
U 
-<       7t3 

34.3 31.7 34.1 

34.9 31.6 33.5 

34.0 31.3 34.7 

INDEX: 
81.3 

SELECTED 

Tti*                  %i*                  7t3* 

jS       7t2 

u 
"<       7t3 

70.6 29.3 0.1 

24.8 74.9 0.4 

0.9 0.7 98.4 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5dB 

SNR = -15 dB 

No Noise 

INDEX: 
67.4 

SELECTED 

7t,*                  7t2*                  7t3* 

|S       7t2 

u 
<       7t3 

52.8 43.7 3.5 

41.0 53.7 5.3 

1.4 2.8 95.8 

INDEX: 
41.9 

SELECTED 

7t,*                  71,*                  7t3* 

|        ^2 

u 
<       7t3 

37.1 34.7 28.2 

35.7 34.4 29.9 

21.8 24.0 54.2 

INDEX: 
33.1 

SELECTED 

7t,*                  7t2*                  7t3* 

< 
P       7t2 
H 
U 
<       7t3 

46.8 27.5 25.7 

46.8 27.5 25.7 

47.2 27.8 25.0 

INDEX: 
92.8 

SELECTED 

7t,*                  7t2*                  7t3* 

< 
g       7t2 

U 
-<       7t3 

88.8 11.2 0.0 

9.7 90.3 0.0 

0.4 0.3 99.3 

Table B-31. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features): 
MSNN Mod 2. (see App B cover page for table description) 
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INDEX: 
83.2 

SELECTED 
Tti*                   7I2*                   7I3* 

<     Tt3 

75.7 24.3 0.0 

25.8 74.1 0.1 

0.0 0.1 99.9 

SNR = -10dB 

SNR = -20 dB 

SNR = 20 dB 

SNR = 10 dB 

SNR = 0dB 

INDEX: 
77.7 

SELECTED 

TCi*                  7I2*                  7t,* 

■<        7t3 

68.4 31.6 0.0 

34.7 65.2 0.1 

0.2 0.3 99.5 

INDEX: 
55.0 

SELECTED 
Tli*                   7I2*                   Tt3* 

|        "2 

■<       7C3 

48.0 39.8 12.2 

46.3 41.7 12.0 

12.9 11.9 75.3 

INDEX: 
34.1 

SELECTED 
Tti*                   7t2*                   7C3* 

26.6 38.9 34.5 

27.2 38.5 34.3 

25.7 37.2 37.1 

INDEX: 
33.2 

SELECTED 
7ti*                   7t2*                   7t3* 

•<       7t3 

39.5 25.4 35.1 

40.4 24.7 34.9 

39.5 25.2 35.3 

INDEX: 
80.8 

SELECTED 
7t]*                  7C2*                 7I3* 

<     7I3 

71.3 28.6 0.0 

28.7 71.1 0.2 

0.0 0.1 99.9 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

No Noise 

INDEX: 
66.0 

SELECTED 

Tti*                  Tt2*                 7t3* 

<       7C3 

58.4 38.5 3.1 

43.7 51.5 4.9 

6.6 5.2 88.2 

INDEX: 
42.3 

SELECTED 
7Ci*                   7T2*                   7t3* 

<     7l3 

28.3 41.0 30.7 

26.5 40.5 33.0 

16.6 25.2 58.3 

INDEX: 
33.5 

SELECTED 
Tti*                   Tt2*                   7t3* 

< 

u 
•<       Tt3 

32.8 28.4 38.8 

33.1 27.8 39.1 

33.8 26.3 39.9 

INDEX: 
92.2 

SELECTED 

Tti*                   Tt2*                   7t3* 

-<       7t3 

84.6 14.9 0.5 

7.8 92.1 0.1 

0.0 0.1 99.8 

Table B-32. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features): 
MSNN Mod 2. (see App B cover page for table description) 
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INDEX: 
81.1 

SELECTED 

71]*                   7t2*                   7I3* 

|        "2 

<       7t3 

68.8 28.3 3.0 

24.9 74.8 0.3 

0.3 0.0 99.7 

INDEX: 
77.3 

SELECTED 

7ti*                  7I2*                 7T3* 

< 
g       7E2 

<;    7i3 

61.6 38.1 0.3 

28.9 71.0 0.0 

0.6 0.2 99.2 

SNR = 20dB SNR = 15 dB 

INDEX: 
75.1 

SELECTED 

TU,*                  7t2*                  7t3* 

< 
P        "2 H 
ü 

67.9 31.3 0.8 

40.1 59.5 0.4 

1.0 1.2 97.8 

SNR = 10 dB 

INDEX: 
55.2 

SELECTED 

Ttj*                   7t2*                   7t3* 

< 
P        "2 H 
U 
<        7l3 

47.1 36.8 16.1 

43.2 40.1 16.7 

9.6 12.1 78.3 

INDEX: 
64.4 

SELECTED 

7ti*                 7C2*                 7t3* 

< 

■«!        7t3 

53.9 39.8 6.3 

40.8 53.5 5.6 

6.0 8.1 85.9 

SNR = 5 dB 

INDEX: 
40.8 

SELECTED 

Tti*                   7l2*                  7l3* 

< 
g        7t2 

<:    7c3 

28.4 39.2 32.4 

29.4 40.3 30.3 

20.6 25.6 53.7 

SNR = 0 dB SNR = -5 dB 

INDEX: 
34.2 

SELECTED 

7t,*                   7C2*                   7C3* 

|        "2 

ü 
■<       7t3 

27.1 34.6 38.3 

26.9 33.9 39.2 

25.5 32.8 41.6 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
33.4 7Ci* 

SELECTED 

7C2* 7t3* 

< 
P        %2 
ü 
<       7I3 

39.3 25.9 34.8 

39.7 25.9 34.5 

38.6 26.4 35.0 

INDEX: 
33.6 

SELECTED 

%i*                 7t2*                 7t3* 

< 
D     TC2 

U 
■<       7C3 

24.5 43.3 32.2 

23.7 44.2 32.1 

24.2 43.7 32.2 

SNR = -15 dB 

No Noise 

INDEX: 
91.4 

SELECTED 

TCj*                   7I2*                  7C3* 

|        *2 

•<       7t3 

84.7 13.1 2.2 

10.4 89.5 0.0 

0.1 0.0 99.9 

Table B-33. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features): 
MSNN Mod 2. (see App B cover page for table description) 
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INDEX: 
88.7 

SELECTED 
7ti*                  7t2*                  71-5* 

< 7i3 

85.9 14.1 0.0 

19.5 80.5 0.0 

0.0 0.3 99.7 

SNR = 20 dB 

SNR =10 dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
75.4 

SELECTED 

Tti*                  Jl2*                  7t3* 

i ^ 
<       TC3 

66.3 32.0 1.7 

38.2 60.4 1.4 

0.1 0.4 99.5 

INDEX: 
56.2 

SELECTED 

7t,*                   7t2*                    7t3* 

< 
3       7t2 
H 
U 
■<        7t3 

44.5 42.9 12.6 

42.7 44.1 13.2 

10.8 9.1 80.1 

INDEX: 
34.8 

SELECTED 
7ti*                   7t2*                    7t3* 

u 
<       7t3 

33.3 35.3 31.3 

33.9 35.7 30.4 

31.3 33.3 35.4 

INDEX: 
33.7 

SELECTED 
Tti*                   7t2*                    7t3* 

1     ^ 
U 
<     7i3 

31.8 34.7 33.5 

32.6 35.2 32.2 

31.8 34.0 34.2 

INDEX: 
82.5 

SELECTED 
TCj*                  7t2*                   7I3* 

|     "2 
U 
<       7t3 

74.3 25.7 0.0 

26.6 73.4 0.0 

0.1 0.1 99.8 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5dB 

SNR = -15 dB 

No Noise 

INDEX: 
70.2 

SELECTED 

Tti*                  7t2*                   7t3* 

i *2 
54.7 43.5 1.7 

38.7 58.6 2.7 

1.1 1.8 97.1 

1 INDEX: 
1     42.3 

SELECTED 
Tti*                  7t2*                   TC3* 

<-> 
<        7t3 

37.1 36.3 26.6 

35.9 35.8 28.4 

22.1 23.8 54.1 

INDEX: 
33.6 

SELECTED 
Tti*                  7t2*                   TC3* 

1     * 
U 
<       7t3 

34.9 33.9 31.2 

34.4 34.5 31.1 

34.9 33.8 31.3 

INDEX: 
94.0 

SELECTED 
Tti*                  7t2*                   TC3* 

1     "2 
<       7t3 

94.8 5.2 0.0 

12.8 87.2 0.0 

0.0 0.1 99.9 

Table B-34. Confusion Matrices for Simulated Modulated Signals (Three-Class, Fifty-One Features): 
MSNN Mod 3. (see App B cover page for table description) 
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INDEX: 
85.8 

SELECTED 

Jii*             7t2*             n3* 

u 
<     n3 

77.6 22.3 0.0 

20.0 79.9 0.0 

0.0 0.0 99.9 

SNR = 20 dB 

SNR=10dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

INDEX: 
33.0 

SELECTED 

7t!*                  7t2*                  7t3* 

< 
g       7t2 

U 
<       7t3 

36.6 32.8 30.6 

37.2 32.4 30.4 

36.5 33.6 29.9 

INDEX: 
81.2 

SELECTED 

Tti*                 7t2*                 7C3* 

U 
<     % 

73.0 27.0 0.0 

28.8 71.2 0.0 

0.0 0.5 99.5 

INDEX: 
77.6 

SELECTED 

7t]*                    7t2*                   IX3* 

69.5 30.4 0.2 

36.1 63.7 0.2 

0.2 0.3 99.5 

INDEX: 
56.0 

SELECTED 

Ttl*                    7t2*                   7t3* 

<     n3 

45.5 42.2 12.3 

42.9 44.4 12.7 

11.0 10.9 78.1 

INDEX: 
34.8 

SELECTED 
7li*                  7t2*                  7C3* 

<    7I3 

33.8 33.1 33.1 

34.1 33.5 32.5 

31.4 31.4 37.2 

SNR=15dB 

SNR = 5 dB 

SNR = -5dB 

SNR = -15 dB 

No Noise 

INDEX: 
69.8 

SELECTED 

Tti*            n2*           n3* 

<     TC3 

56.1 42.9 0.9 

40.6 58.0 1.4 

2.1 2.5 95.4 

INDEX: 
41.7 

SELECTED 

TCi*                   7t2*                   JC3* 

<    713 

37.2 36.6 26.2 

35.9 36.2 27.9 

22.6 25.8 51.7 

INDEX: 
33.5 

SELECTED 
Ttl*                   7^*                   7C3* 

31.4 34.1 34.5 

31.9 33.4 34.7 

32.6 31.7 35.7 

INDEX: 
93.1 

SELECTED 

TCi*                 Tt2*                 7I3* 

1     "2 
ü 
<     7i3 

92.8 7.2 0.0 

13.3 86.7 0.0 

0.0 0.1 99.9 

Table B-35. Confusion Matrices for Simulated Modulated Signals (Three-Class, Twenty-Six Features): 
MSNN Mod 3. (see App B cover page for table description) 

143 



INDEX: 
81.0 

1                  SELECTED 

1         7t!*                   7E2*                   7E3* 

u 
■<        7l3 

|     73.5 26.3 0.2 

I     28.3 71.7 0.0 

2.1 0.0 97.9 

SNR=10dB 

SNR = 0 dB 

SNR = -10 dB 

SNR = -20 dB 

SNR = 20 dB 

INDEX: 
75.9 

SELECTED 

7t!*                   7E2*                   7t3* 

<       7t3 

63.9 35.8 0.4 

34.7 65.0 0.3 

0.5 0.7 98.8 

INDEX: 
55.6 

SELECTED 
7li*                   7t2*                   7I3* 

U 
<       7l3 

46.6 38.3 15.1 

41.7 42.4 15.9 

10.5 11.7 77.8 

INDEX: 
34.5 

SELECTED 
7ti*                  %i*                  TC3* 

|        *2 
u 
•<        7C3 

33.5 32.7 33.8 

32.4 32.5 35.1 

31.3 31.2 37.6 

INDEX: 
32.8 

SELECTED 
7Ci*                   7t2*                   7I3* 

i  "2 
-<        7t3 

35.8 30.9 33.3 

37.5 30.5 32.0 

35.9 31.9 32.2 

INDEX: 
78.5 

SELECTED 
7ti*                   712*                  71,* 

•<       7C3 

68.4 31.5 0.1 

32.4 67.6 0.0 

0.2 0.2 99.6 

SNR = 15 dB 

SNR = 5 dB 

SNR = -5 dB 

SNR = -15 dB 

INDEX: 
68.0 

SELECTED 

7ti*                 7^*                 7t3* 

< 
D       7t2 

U 
■<      7t3 

55.3 40.8 3.9 

40.1 56.1 3.8 

3.1 4.4 92.6 

No Noise 

INDEX: 
40.9 

SELECTED 
71] *                   7l2*                   7t3* 

l        *2 
<:    7t3 

35.1 32.4 32.5 

35.6 34.3 30.0 

24.0 22.8 53.3 

INDEX: 
34.3 

SELECTED 
Tti*                   7I2*                   7t3* 

< g     n2 
u 
<!     7X3 

30.9 36.1 33.0 

29.0 39.0 32.0 

30.7 36.2 33.1 

INDEX: 
92.6 

SELECTED 
7Ci*                   7t2*                   7I3* 

l        "2 
u 
•<       7t3 

92.8 7.2 0.0 

13.4 86.6 0.0 

1.6 0.0 98.4 

Table B-36. Confusion Matrices for Simulated Modulated Signals (Three-Class, Eleven-Features): 
MSNN Mod 3. (see App B cover page for table description) 
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Figure B-l. Statistical Classifier Performance Results. 
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Figure B-2. Perceptron Performance Results. 
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Figure B-3. MSNN Performance Results. 
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Figure B-5. MSNN Mod 2 Performance Results. 
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Figure B-6. MSNN Mod 3 Performance Results. 
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APPENDIX C. MATLAB CLASSIFICATION PROGRAMS 

This section contains the MATLAB programs used to generate the simulation 

results discussed in Chapters IV and V. These functions are categorized as either 

common or specific to a particular classification scheme. 

A.       COMMON PROGRAMS 

The common programs included in this section include the main program; feature 

simulation functions; modulated signal simulation and feature extraction functions; and 

data conditioning and display routines. 

1.        Controlling Program: simmsnn_compare.m 

% COMPARE classification methods 
% 
% 5 March 2000 
% Miguel G. San Pedro 
%*************************+************************************************************** 

clear 
format compact 
format short e 

global gloUsrReq 
gloUsrReq = input('Skip all optional displays (Y/N): ','s'); 

global gloUsrPlot 
gloUsrPlot = input('Plot learning curves (Y/N): ','s'); 

num_data = []; % number of training realizations 
class_mean = []; % feature mean values 
class_cov = [] 
class_var = [] 
classData = [] 
testClass = [] 

% feature covariance matrix 
% feature variance values 
% training data set 
% testing data set 

snr = []; % training/testing signal SNR 

save test\testClass.dat testClass -ascii -tabs 

% ASK if simulate signal or simulate data 
usrReq = input('Simulate <signal> or <*data*>: ','s'); 
dispC ') 

% GENERATE testing/training data 
if (usrReq == 'signal') 

num_class = 3; % number of signal classes 
A = 4; % SET signal amplitude 
T = le-7; % SET bit period (sec) 
fs = 5e8; % SET bit sampling frequency (samples/sec) 
fc = 4e7; % SET carrier frequency (Hz_ 
n = linspace(0,T,fs*T); 
features = []; % vector of distinguishing features 
trnFeatures = [],- % vector of class distinguishing features 
mnFeatures = []; % vector of class distinguishing feature mean 
covFeatures = (]; % class covariance matrix 
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varFeatures = [] ; % vector of class distinguishing feature variance 

% DETERMINE signal features 
disp (' EXTRACTING SIGNAL FEATURES ' ) 
features = detFeatures; 
[numRows,num_features] = size(features); 
disp(['Number of features: ',num2str(num_features)]) 
disp (' ') 

% GENERATE signals 
num_data = input('Enter number of training signals (def=100):   ') ; 
if (isempty(num_data)) 

num_data = 100; 
end 

usrSNR = input('Add noise (Y/N):  ', ' s') ; 
if (usrSNR == 'Y') 

snr = input ('Enter signal SNR (default=0dB) :  ') ,- 
dispC ') 
if (isenpty{snr)) ,- 

snr = 0; 
end 

else 
snr = 9999; 

end 

plotSignal('plot2ASK',A,T,fc,n,features,snr) 
plotSignal('plot2PSK',A,T,fc,n,features,snr) 
plotSignal('plot2FSK',A,T,fc,n,features,snr) 

[trnFeatures,mnFeatures,covFeatures,varFeatures]... 
= genSignal('gen2ASK',num_data,A,T,fs,n,features,snr); 

classData = [classData;trnFeatures]; 
class_mean = [class_mean mnFeatures]; 
class_cov = [class_cov covFeatures]; 
class_var = [class_var varFeatures],- 

[trnFeatures,mnFeatures,covFeatures,varFeatures]... 
= genSignal Cgen2PSK',num_data,A,T, fs,n, features, snr) ; 

classData = [classData;trnFeatures]; 
class_mean = [class_mean mnFeatures]; 
class_cov = [class_cov covFeatures] ,- 
class_var = [class_var varFeatures]; 

[trnFeatures,mnFeatures,covFeatures,varFeatures]... 
= genSignal('gen2FSK',num_data,A,T,fs,n,features,snr); 

classData = [classData; trnFeatures] ,- 
class_mean = [class_mean mnFeatures]; 
class_cov = [class_cov covFeatures]; 
class_var = [class_var varFeatures]; 

% GENERATE random test data 
load testClass.dat 
randTest = 100*randn(num_features,num_data*10) ,- 
testClass = [testClass;randTest]; 
save test\testClass.dat testClass -ascii -tabs 

else 
% ASK user for input data; 
num_class = [ ] ,- 
num_features = []; 

else set default values 
% number of signal classes 
% number of distinguishing features 

userlnput = input('Enter user defined inputs (Y/N):     ','s'); 
if (userlnput == 'Y') 

disp(' ') 
[num_data,num_class,num_features,class_mean,class_var]... 

= userData(num_data,num_class,num_features,class_mean,class_var), 
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else 
% default values 
num_data = 100; 
num_class = 3; 
num_features = 3; 
class_mean = 2*rand(num_features,num_class) - 1; 

usrSNR = input ('Add noise (Y/N) :      ', ' s') ,- 
if (usrSNR == 'Y') 

snr = input('Enter feature SNR (default=0dB):     '); 
if (isempty(snr)) 

snr = 0; 
end 

snrConst = 10A(snr/10); 

for k = l:num_class 
cont = 1; 
classVar = [ ]; 
varPower = num_features/snrConst; 
while(cont) 

classVar = rand(num_features-l,l)/snrConst; 
lastVar = varPower- sum(classVar); 
if (lastVar >= 0) 

classVar = [classVar' lastVar]'; 
cont = 0; 

end 
end 
class_var = [class_var classVar]; 

end 
else 

class_var = zeros(num_features,num_class); 
end 
% NOTE: with class_mean and class_var, construct data then 
%       covariance matrix 

end 
class_mean 
class_var 

%************************************************************************************* 
% GENERATE class training/testing data 
% NOTE:  genclass_compare GENERATES/RETURNS training data and STORES 
%       testing realizations in work\test 
%       dim(classData) = num_features*num_class x num_data 

[classData,class_cov] = genclass_compare(num_data,class_mean,class_var); 

[rowData,num_data] = size(classData); 
if (rowData ~= num_features*num_class) 

disp('ERROR in data field') 
end 

end 
^**************************************************************************************** 
% NORMALIZE training and testing data by standard deviation (Method2) 
[classData_norm] = dataMethod2 (classData,class_mean,class_var) ,- 

£**************************************************************************************** 

% PLOT performance parameter and error surfaces/contours over a range 
% of w and b 
plotMS(num_class,num_features,classData,classData_norm) 

%**************************************************************************************** 

% SET NN training parameters 
al=20;        % epochs between updating display 
a2=500;       % maximum number of epochs to train 
a3=100;       % initial learning rate 
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a4=2; % learning rate increase 
a5=0.5; % learning rate decrease 
a6=0.9; % momentum constant 
a7=1.04; % maximum error ratio 
tp = [al a2 a3 a4 a5 a6 a7] ; 

% INITIALIZE/GENERATE 5 sets of weight and bias values, 
w = 2*randn(num_features,5)-1; 
b = randn (1,5); 

% MONITOR MD, weight, bias update 
%checkWB = []; 
%save checkWB.dat checkWB -ascii -tabs 

% INITIALIZE confusion matrix counters 
% note:  reset confusion matrix when change class number, feature number, or SNR 
reset = input('Reset confusion matrix counters (Y/N):      ','s'); 
if (reset == 'Y') 

typeA = zeros(num_class+l,num_class); 
typeB = zeros(num_class+l,num_class); 
typeBl = zeros(num_class+l,num_class); 
typeC = zeros(num_class+l,num_class); 
typeStat = zeros (num_class+l,num_class),- 

save typeA.dat typeA -ascii -tabs 
save typeB.dat typeB -ascii -tabs 
save typeBl.dat typeBl -ascii -tabs 
save typeC.dat typeC -ascii -tabs 
save typeStat.dat typeStat -ascii -tabs 

end 

% A.  TRAIN/TEST standard MSNN 
cd Method_SPl 

dispC ') 
disp('**************************************************/) 
dispCA.  MSNN') 
fig = 2000; 

% type is CONFUSION MATRIX 
% note:  type tracks confusion matrix for these 5-runs 
%       typeA tracks confusion matrix for multiple 5-run 
%       individual runs tracked by confusion matrix in simmsnn.m (i.e., typel) 
type = zeros(num_class+l,num_class); 
save type.dat type -ascii -tabs 

for m = 1:5 
disp(['Run ',num2str(m)]) 
simmsnn('trms_sp',l,classData,num_features,w(:,m),b(l,m),tp,fig); 
dispC ') 
fig = fig+l+sum(l: (num_.class-l)) ; 

end 

load type.dat 
disp(' ') 
for m = l:num_class+l 

disp(['TYPE',num2str(m),': ',num2str(type(m,:))]) 
end 

cd . . 
load typeA.dat 
[Arow,Acol] = size(typeA); 
tempA = typeA(Arow-num_class:Arow,:); 
tempA = tempA + type; 
typeA = [ typeA,-tempA ],- 
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save typeA.dat typeA -ascii -tabs 

s^* *************************************************************************************** 
s^* *************************************************************************************** 

% B.  TRAIN/TEST MSNN with normalized projection space (MSNN Mod 2) 
cd Method_SP5 

dispC ') 
di SD(' + *************************************************') 
dispt'B.  MSNN with norm projection space (MSNN Mod 3)') 
fig = 2500; 

% type is CONFUSION MATRIX 
type = zeros(num_class+l,num_class); 
save type.dat type -ascii -tabs 

for m = 1:5 
disp(['Run ',num2str(m)]) 
simmsnn('trms_sp5',5,classData,num_features,w(:,m),b(l,m),tp, fig); 
dispC ') 
fig = fig+l+sum(l:(num_class-l)); 

end 

load type.dat 
disp (' ') 
for m = l:num_class+l 

disp( ['TYPE',num2str(m) , ' : ' ,num2str (typefm, :) ) ]) 
end 

cd . . 
load typeB.dat 
[Brow,Bcol] = size(typeB); 
tempB = typeB(Brow-num_class:Brow,:); 
tempB = tempB + type; 
typeB = [typeB;tempB]; 
save typeB.dat typeB -ascii -tabs 

<^**************************************************************************************** 
<^**************************************************************************************** 
% Bl.  TRAIN/TEST MSNN and VMR termination reqmt (MSNN Mod 3) 
cd Method_SP8 

disp (' ') 

dispt'Bl.  MSNN with VMR termination (MSNN Mod 3)') 
fig = 2500; 

% type is CONFUSION MATRIX 
type = zeros(nuni_class+l,num_class) ; 
save type.dat type -ascii -tabs 

for m = 1:5 
disp(['Run ',num2str(m)]) 
simmsnnl'trms_sp8',8,classData,num_features,w(:,m),b(l,m),tp,fig); 
dispC ') 
fig = fig+l+sum(l: (num^.class-1)) ; 

end 

load type.dat 
disp (' ') 
for m = 1:num_class+l 

disp( [ 'TYPE' ,num2str(m) , ' : ' ,num2str(typedn, :)) ] ) 
end 

cd . . 
load typeBl.dat 
[Blrow,Blcol] = size(typeBl); 
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tempBl = typeBl(Blrow-num_class:Blrow,:); 
tenpBl = tempBl + type; 
typeBl = [typeBl;tempBl]; 
save typeBl.dat typeBl -ascii -tabs 

JMH*»**H»HUH»HHH«HH»t««JH4tH*M),i«*HM«tH«t«Hil»i»HHHUM*«(*»»HH 

% C.  TRAIN/TEST MSNN with preconditioned input space (MSNN Mod 1) 
cd Method_SP2 

dispC ') 
disp('**************************************************/\ 

dispCC. MSNN with precond input (MSNN Mod 1)') 
fig = 3000; 

% type is CONFUSION MATRIX 
type = zeros(num_class+l,num_class); 
save type.dat type -ascii -tabs 

for m = 1:5 
disp(['Run ',num2str(m)]) 
simmsnn_C(classData_norm,num_features,w(:,m),b(l,m),tp,fig); 
disp (' ') 
fig = fig+l+sum(l: (num_class-l)) ,• 

end 

load type.dat 
dispC ') 
for m = l:num_class+l 

disp(['TYPE',num2str(m),' 
end 

,num2str(type(m,:))]) 

cd .. 
load typeC.dat 
[Crow,Ccol] = size(typeC); 
tempC = typeC(Crow-num_class:Crow,:); 
tempC = tempC + type; 
typeC = [typeC;teinpC] ,- 
save typeC.dat typeC -ascii -tabs 

jM»m*HH*HHH»HH*«««*H«M«»»l,MiM*m»»**«HMtH**«t»iHHH4«t,»UH 

% D.  PERCEPTRON NN 
dispC ') 
disp('**************************************************') 
di sp('D.  Perceptron') 
cd Method_SP7 

% type is CONFUSION MATRIX 
type = zeros(num_class+l,num_class); 
save type.dat type -ascii -tabs 
noType = 0; 
save noType.dat noType -ascii -tabs 

for m = 1:5 
disp(['Run ',num2str(m)]) 
percptrnClassifier(num_class,classData,w(:,m),b(:,m)) 
disp(' ') 

end 

load type.dat 
for m = l:num_class+l 

disp(['TYPE',num2str(m) , ' 
end 
load noType.dat 
disp(['BAD TYPE: ',num2str(noType)] 

,num2str(type(m,:))]) 
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cd . . 
load typeD.dat 
[Drow,Dcol] = size(typeD); 
tempD = typeD(Drow-num_class:Drow,:); 
tempD = tempD + type; 
typeD = [typeD;tempD]; 
save typeD.dat typeD -ascii -tabs 

%**************************************************************************************** 
%**************************************************************************************** 
%% E. TEST iaw Brunzell/Eriksson quadratic classifier 
dispC ')' 
di SD{'**************************************************') 
dispCE.  Statistical Classifier') 

statClassifier(num_data,num_class,num_features,class_mean,class_cov) 

Feature Simulation 

a.        userData.m 
function [num_data,num_class,num_features,class_mean,class_var] . .. 

= userData(num_data,num_class,num_features,class_mean,class_var) 

%**************************************************************************************** 
% Function 
% - PROMPTS user for data specifications 
% - if no user data entered, default values used 
% 
% Use:   [num_data,num_class,num_features,class_mean,class_yar] 
% = userData(num_data,num_class,num_features,class_mean,class_var) 
% 
% Input/Returns 
%   num_data:       number of training signals to construct 
%   num_class:      number of signal classes 
%   num_features:    number of distinguishing features 
%   class_mean:      'num_class' 'num_features'xl vectors of class feature means 
%   class_var:      'num_class' 'num_features'xl vectors of class feature variances 
% 
% 25 January 2000 
% Miguel G. San Pedro 
%**************************************************************************************** 

dispCWhen asked for values, hit <enter> to use default values') 

disp(' ') 
num_data = input('Enter number of training signals (default=100):  '); 
if (isempty(num_data)) 

num_data = 100; 
end 

dispC ') 
num_class = input('Enter number of classes (default=3):    '); 
if (isempty(num_class)) 

num_class = 3; 
end 

dispC ') 
num_features = input('Enter number of features (default=3): '); 
if (isempty(num_features)) 

num_features = 3 ; 
end 
if (num_features < num_class) 

disp('ERROR: number of distinguishing features > number of classes') 
end 
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dispC ') 
userData = input('Enter mean for each feature for all classes (Y/N): 
if (userData == 'Y') 

for k = l:num_class 
getData = input(['Enter mean for class',num2str(k) ,... 

' features (enter as column vector):    ']); 
[rowData,colData] = size(getData); 
if(rowData*colData -= num_features) 

disp('* * * DATA ENTRY ERROR * * *') 
else 

if (colData ~=1) 
getData = reshape (getData, rowData*colData, 1) ,- 

end 
end 
class_mean(:,k) = getData; 

end 
else 

class_mean = 2*rand(num_features,num_class) - 1; 
end 

dispC ') 

userData = input('Enter variance for each feature for all classes (Y/N) 
if (userData == 'Y') 

for k = l:num_class 
getData = input(['Enter variance for class',num2str(k) ,... 

' features (enter as column vector):    ']); 
[rowData,colData] = size(getData); 
if(rowData*colData ~= num_features) 

dispC*** DATA ENTRY ERROR ***') 
else 

if (colData ~=1) 
getData = reshape(getData,rowData*colData,1); 

end 
end 
class_var(:,k) = getData; 

end 
else 

% Randomly DETERMINE variance and ADD white noise 
snr = []; 
class_var = [] ; 
usrSNR = input('Add noise (Y/N):  ','s'); 
if (usrSNR == 'Y') 

snr = input ('Enter feature SNR (default=OdB) : '),- 
if (isempty(snr)) 

snr = 0; 
end 

','s'),- 

','s'J 

snrConst = 10Ä(snr/10); 

for k = l:num_class 
cont = 1; 
classVar = [],- 
varPower = num_features/snrConst; 
while(cont) 

classVar = rand(num_features-l,1)/snrConst; 
lastVar = varPower - sum(classVar),- 
if (lastVar >= 0) 

classVar = [classVar' lastVar]'; 
cont = 0; 

end 
end 
class_var = [class_var classVar]; 

end 
else 

class_var = zeros(num_features,num_class); 
end 

end 
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% NOTE:  with class_mean and class_var, construct data then covariance matrix 

return   

b.        genclass_compare.m 
function [difclass,class_cov] = genclass_compare (numData, class_mean, class_var) ,- 

^**************************************************************************************** 

% Function 
% - Randomly GENERATES 'numData' training realizations of 'num_class' classes (note: 
%   num_class plotting limited to <= 5). 
% - CALCULATES covariance matrix of data for statistical analysis 
% - PRE-CONDITIONS class data for use by Method2 by normalizing data by standard 
%   deviation, resulting in "testcl#" data (normalized data vice normalized 
%   projections). 
% - GENERATES 10*'numData' test realizations. 
% 
% Use: [classdata,class_cov] = genclass_compare(numData,num_class,class_mean,class_var); 
% 
% Input   numData:   number of training signals to construct 
%        class_mean: 'num_class' 'num_features'xl vectors of class feature means 
%        class_var: 'num_class' 'num_features'xl vectors of class feature variances 
% 
% Returns difclass:  generated training data points 
%        class_cov: 'num_class' 'num_features'x'num_features' covariance matrix 
% 
% Saves at directory test/, testing realizations 
% 
% 14 January 2000 
% Miguel G. San Pedro 
%**************************************************************************************** 
plot_char = ['b*';'r+';'go';'cs'; 'md'] ; 
class_cov = []; 
difclass = []; 

%" TRAINING REALIZATIONS 
figure(1) 
orient tall 

[num_features,num_class] = size(class_mean),- 
% GENERATE numData training realizations 
for m = l:num_class 

classData = sqrt(class_var(:,[m*ones(1,numData)])).*randn(num_features,numData)... 
+ class_mean(:,[m*ones(1,numData)]); 

class_cov = [class_cov-cov(classData')]; 
difclass = [difclass;classData]; 

% PLOT first three features of each class 
subplot(211) 
plot3(classData(1,:),classData(2,:),classData(3,:),plot_char(m,:)) 
hold on 
xlabel('First Feature'); 
ylabel('Second Feature'); 
zlabel('Third Feature'); 
title('Training Data') 
box on 
grid on 

subplot(234) 
plot(classData(1,:),classData(2,:),plot_char(m,:)) 
hold on 
xlabel('First Feature'); 
ylabel('Second Feature'); 
grid on 
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subplot(235) 
plot(classData(l,:),classData(3,:),plot_char(m,:)) 
hold on 
xlabel ('First Feature') ,- 
ylabel('Third Feature'); 
grid on 

subplot(236) 
plot(classData(2,:),classData(3,:),plot_char(m,:)) 
hold on 
xlabel('Second Feature'); 
ylabel ('Third Feature') ,- 
grid on 

end 
hold off 

%***********************, «.«.««Htt..».».....«».».«.»..».»..».*....*.*..*.»..**.** 

% GENERATE 
%  - numData*10 test realizations of each classes 
%  - test_data realizations of random noise that should not type to any classes 
test_data = numData*10; 
testClass = [] ,- 

for k = l:num_class 
cl_SD = []; 
cl_SD = sqrt(class_var(:,[k*ones(1,test_data)])); 
cl_Mean = [ ] ; 
cl_Mean = class_mean(:,[k*ones(1,test_data)]); 

trainData = cl_SD.*randn(num_features,test_data) + cl_Mean; 
testClass = [testClass;trainData]; 

end 

% GENERATE non-class data for testing 
nonClassData = 10*randn(num_features,test_data) - 5; 
testClass = [testClass;nonClassData] ,- 
save test\testClass.dat testClass -ascii -tabs 

return 

Modulated Signal Simulation and Feature Extraction 

a.        genSignaLm 
function [featuresSave,meanSig,covSig,varSig]... 

= genSignal(fxn,num_signals,A,T,f,n,features,snr) 

% Function 
%  - GENERATES training and testing signals 
% 

% Use: [featuresSave,meanSig,covSig,varSig] 
% = genSignal(fxn,num_signals,A,T,f,n,features,snr) 
% 

% Input   fxn: string name of signal type to construct 
% C2-ASK', '2-PSK', or '2-FSK') 
%        num_signals:      number of training signals to construct; constructs 

10*num_signals testing signals 
signal amplitude 
signal period 
carrier frequency 
time sample vector 

features:        distinguishing features indices (from detFeatures.m) 
snr: signal SNR 

% A 
% T 
% f 
% n 

% 
% Returns featuresSave:     distinguishing features extracted for classifying 
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% meanSig 
% covSig: 
% varSig: 
% 

% element is zero 

: mean of extracted features 
covariance matrix of extracted features 
variance of extracted features 

% 31 January 2000 
% Miguel G. San Pedro 

% GENERATE training signals 
featuresSave = []; 
for k = l:num_signals 

[signal,featuresSignal] = feval(fxn,A,T,f,n,features,snr); 
featuresSave = [featuresSave featuresSignal] ,- 

end 
meanSig = mean(featuresSave,2); 
covSig = cov(featuresSave') ; 
[covSigRow,covSigCol] = size(covSig); 
for k = l:covSigRow 

for kk = l:covSigCol 
if (-covSig(k,kk)) 

covSig(k,kk) = le-10; 
end 

end 
end 
varSig = diag(covSig); 
%goon = input('continue ','s'); 
%if goon == 'y' 
%  varSig 
%  meanSig 
%end 

% GENERATE testing signals 
load testClass.dat 
testClassSave = []; 
for k = l:10*num_signals 

[signal,testSignal] = feval(fxn,A,T,f,n,features,snr); 
testClassSave = [testClassSave testSignal]; 

end 
testClass = [testClass;testClassSave]; 
save test\testClass.dat testClass -ascii -tabs 

return 

gen2ASK.m, gen2PSK.m, gen2FSK.m 
function [signal,features2ASK] = gen2ASK(A,T,fc,n,features,snr) 

Function 
- GENERATES a 2ASK signal 

Use: [signal,features2ASK] 

Input A: 
T: 
fc: 
n: 
features: 
snr: 

Returns signal: 

features2ASK: 

21 January 2000 
Miguel G. San Pedro 

= gen2ASK(A,T,fc,n,features,snr) 

signal amplitude 
bit period 
carrier frequency 
time sample vector 
distinguishing features indices (from detFeatures.m) 
signal SNR 

postive frequencies of Fourier transformed 2-ASK signal 
realization 
distinguishing features spectral magnitudes 
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jutmttmmtjtitiiümtitjujjjittmjjj.j.jjjjjj,,,,,,,,^,^ 

% GENERATE message 
a = zeros (1,20) ,- 
while (sum(a) == 0) 

a = round(rand(l,20)) ; 
end 
basis = A/sqrt(T)*sin(2*pi*fc*n) 

************************ 

% SET basis function 

msg = []; 
for kk = 1:length(a) 

msg = [msg a(kk)*basis]; 
end 
[msgRow,msgCol] = size(msg); 
v = reshape(msg,l,msgRow*msgCol); 

% ADD white noise 
if ((nargin >=5) & (snr ~= 9999)) 

energyV = v*v'; 
varNoise = (energyV/length(n))/10"(snr/10); 
noise = sqrt(varNoise)*randn(size(v)),- 
v = v + noise; 

end 

% NORMALIZE the signal power 
den = v*v'; 
v = v/sqrt (den) ,- 

% PRE-PROCESS signal 
% - use decision rule to extract points 
[sigRow,sigCol] = size(v); 
iter = floor(sigCol/250); 
aveSig = zeros(1,1000); 
for k = 1:iter 

% FFT signal 
block = v(l,250*k-249:250*k) ,- 

. sigFFT = abs(fft(block,1000)); 
aveSig = aveSig + sigFFT; 

end 
signal = aveSigd:length(aveSig)12)/iter; 

f eatures2ASK = [ ] ,- 
if (nargin >= 5) 

features2ASK = signal(features)'; 
end 

return 

% discard leftover points 

function [signal,features2PSK] = gen2PSK(A,T,fc,n,features,snr) 

% Function 
%  - GENERATES a 2PSK signal 
% 
% Use:   [signal,features2PSK]   = gen2PSK(A,T,fc,n,features,snr) 
% 

signal amplitude 
bit period 
carrier frequency 
time sample vector 
distinguishing features indices (from detFeatures.m) 
signal SNR 

% Input 
% 
% 
% 
% 
% 
% 
% Returns signal: 

A: 
T: 
fc: 
n: 
features: 
snr: 

features2PSK: 

postive frequencies of Fourier transformed 2-PSK signal 
realization 
distinguishing features spectral magnitudes 
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% 
% 21 January 2000 
% Miguel G. San Pedro 
%**************************************************************************************** 

% GENERATE message 
a = 2*round(rand(l,20)) - 1; 
basis = A*sqrt(2/T)*sin(2*pi*fc*n); % SET basis function 

msg = []; 
for kk = 1:length(a) 

msg = [msg a(kk)*basis]; 
end 
[msgRow,msgCol] = size(msg); 
msg = reshape(msg,l,msgRow*msgCol); 

v = msg; 

% ADD white noise 
if ((nargin >=5) & (snr -= 9999)) 

energyV = v*v'; 
varNoise = (energyWlength(n))/10" (snr/10) ; 
noise = sqrt(varNoise)*randn(size(v)); 
v = v + noise; 

end 

% NORMALIZE the signal power 
v = v/sgrt(v*v'); 

% PRE-PROCESS signal 
% - use decision rule to extract points 
[sigRow,sigCol] = size(v); 
iter = floor(sigCol/250); % discard leftover points 
aveSig = zeros(1,1000); 
for k = l:iter 

% FFT signal 
block = v(l,250*k-249:250*k); 
sigFFT = abs(fft(block,1000)); 
aveSig = aveSig + sigFFT,- 

end 
signal = aveSig(1:length(aveSig)12)/iter; 

features2PSK = []; 
if (nargin >= 5) 

features2PSK = signal(features)'; 
end 

return 

function [signal,features2FSK] = gen2FSK(A,T,fc,n,features,snr) 

***************************************************************************************** 
% Function 
%  - GENERATES a 2FSK signal 
% 
% Use: [signal,features2FSK] = gen2FSK(A,T,fc,n,features,snr) 
% 
% Input   A: signal amplitude 
%        T: bit period 
%        fc: carrier frequency 
%        n: time sample vector 
%        features: distinguishing features indices (from detFeatures.m) 
%        snr: signal SNR 
% 
% Returns signal: postive frequencies of Fourier transformed 2-FSK signal 
% realization 
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features2FSK: distinguishing features spectral magnitudes % 
% 
% 21 January 2000 
% Miguel G. San Pedro 

delf = 1/T; 

% GENERATE message 
a = round (rand (1,20) ) ,- 

basis = [ ] ; 
for kk = 1:length(a) 

if (a(kk) == 1) 
basis = [basis sqrt(2/T)*sin(2*pi*fc*n)]; 

else 
basis = [basis sqrt (2/T) *sin(2*pi* (fc+delf) *n) ] ,- 

end 
end 
msg = basis; 
[msgRow,msgCol] = size(msg); 
msg = reshape(msg,l,msgRow*msgCol); 

v = A*msg; 

% ADD white noise 
if ((nargin >=5) & (snr -= 9999)) 

energyV = v*v',- 
varNoise = (energyV/length(n))/10*(snr/10) ; 
noise = sqrt (varNoise) *randn(size (v) ) ; 
v = v + noise; 

end 

% NORMALIZE the signal power 
v = v/sqrt(v*v'); 

% PRE-PROCESS signal 
% - use decision rule to extract points 
[sigRow,sigCol] = size(v); 
iter = floor(sigCol/250); 
aveSig = zeros(1,1000); 
for k = l:iter 

% FFT signal 
block = v(l,250*k-249:250*k) ; 
sigFFT = abs(fft(block, 1000)); 
aveSig = aveSig + sigFFT,- 

end 
signal = aveSig(l:length(aveSig)12)/iter; 

f eatures2FSK = [ ] ,- 
if (nargin >= 5) 

features2FSK = signal(features)'; 
end 

return 

% discard leftover points 

c.        detFeatures.m, extractFeatures.m 
function [features] = detFeatures 

% Function 
% - EXTRACTS feature indices to be used for signal classification 
% 
% Use: [featuresLoc] = extractFeatures(sigType,signal) 
% 
% Input   (none) 
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% 
% Returns features:  signal component indices for signal classification 
% 
% 21 January 2000 
% Miguel G. San Pedro 

clear 

A = 4; % SET signal amplitude 
T = le-6; % SET bit interval of signal (sec) 
fs = 5e7; % SET bit sampling frequency (samples/sec) 
fc = 5e6; % SET carrier frequency (Hz) 
n = linspace(0,T,fs*T); 
features = []; 

% DETERMINE classl features:  2-ASK 
featuresSave = [ ] ; 
for k = 1:1000 

[ASK, temp] = gen2ASK(A,T,fc,n) ,- 
featuresLoc = extractFeatures ('2ASK' ,ASK) ,- 
if (k -= 1) 

featuresSave = intersect(featuresSave,featuresLoc); 
else 

featuresSave = featuresLoc,- 
end 

end 
features2ASK = featuresSave; 
disp(size(features2ASK)) 

features = union(features, features2ASK) ,- 

% DETERMINE class2 features:  2-PSK 
featuresSave = []; 
for k = 1:1000 

[PSK,temp] = gen2PSK(A,T,fc,n) ,- 
featuresLoc = extractFeatures('2PSK',PSK); 
if (k -= 1) 

featuresSave = intersect(featuresSave,featuresLoc); 
else 

featuresSave = featuresLoc,- 
end 

end 
features2PSK = featuresSave; 
disp(size(features2PSK)) 

features = union(features,features2PSK); 

% DETERMINE class3 features:  2-FSK 
featuresSave = [ ] ; 
for k = 1:1000 

[FSK,temp] = gen2FSK(A,T,fc,n) ,- 
featuresLoc = extractFeatures; '2FSK' ,FSK) ,- 
if (k -= 1) 

featuresSave = intersect(featuresSave,featuresLoc); 
else 

featuresSave = featuresLoc; 
end 

end 
features2FSK = featuresSave; 
disp(size(features2FSK)) 

features = union(features,features2FSK); 

return 
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function [featuresLoc] = extractFeatures(sigType,signal) 

JMH.H.......M.«H*«,M,„H„HH,H,MH„HH,„M]r(MHttt4H(rtttHH)iH4H4(Ht 

% Function 

% - EXTRACTS feature indices satisfying prescribed decision rule 
% 

% Use: [featuresLoc] = extractFeatures(sigType,signal) 
% 
% Input   sigType: string specifying signal type 
% signal: signal frequency components 
% 

% Returns featuresLoc:      indices of signal components satisfying prescribed decision 
% rule 
% 
% 21 January 2000 
% Miguel G. San Pedro 

npoints =2; % npoints specifies feature spacing 
featuresLoc = 30:npoints:130; % decision rule 

return 

4.        Data Conditioning and Display 

a.        dataMethodl.m 
function [classData_norm] = dataMethod2(classData,class_mean,class_var) 

{««.«..«»»«„»„„«.».....«.«.„«„„„»„„„„„„„„„„„„„„„„„„„^ 
% Function 
% - NORMALIZES training and testing data by class standard deviation for use in Method2 
% 
% Use: [classData_norm] = dataMethod2(classData,class_mean,class_var) 

% Input classData: 
% class_mean: 
% class_var: 
% 

generated training data 
'num_class' 'num_features'xl vectors of class feature means 
'num_class' 'num_features'xl vectors of class feature 
variances 

% Returns classData_norm:   normalized training data 
% 

% Saves at directory test/, normalized testing realizations 
% 
% 14 January 2000 
% Miguel G. San Pedro 
t*«...H,...«*„.ti*»4H„„„»HH»,„MH„tl4JH11,H14ilM]lllllit(rlllrtttttti4ttttt4 

classData_norm = [ ] ,- 
[num_features,num_class] = size(class_mean) ,- 
[rowData,num_data] = size(classData); 

% NORMALIZE training data by standard deviation (Method2) 
if (num_features*num_class ~= rowData) 

disp('Note:  INPUT ERROR') 
else 

for k = l:num_class 
knum_feat = k*num_f eatures ,- 
data = classData(knum_feat - num_features + l:knum_feat, :) ,- 
data_adj = (data - class_mean(:,[k*ones(l,num_data)]))... 

./sqrt(class_var(:, [k*ones (l,nuin_data) ]))... 
+ class_mean(:,[k*ones(l,num_data)]); 

classData_norm = [classData_norm;data_adj]; 
end 

end 
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% NORMALIZE testing data by standard deviation (Method2) 
testClass_norm = []; 
load test\testClass.dat 
[rowData,num_test] = size(testClass); 

if (num_features*(num_class+l) -= rowData) 
dispCNote:  INPUT ERROR') 

else 
for k = l:num_class+l 

knum_feat = k*num_features; 
data = testClass(knum_feat - num_features + 1:knum_feat,:); 
data_adj_save = []; 
for kk = l:num_class 

data_adj = (data - class_mean(:,[kk*ones(l,num_test)]))... 
./sqrt(class_var(:,[kk*ones(l,num_test)]))... 
+ class_mean(:, [kk*ones(l,num_test) ] ) ; 

data_adj_save = [data_adj_save;data_adj]; 
end 
testClass_norm = [testClass_norm data_adj_save]; 

end 
end 

save test\testClass_norm.dat testClass_norm -ascii -tabs 

return . 

b.       plotMS.m, errsurfjsp.m 
function plotMS(num_class,num_features,classData,classData_norm) 

^**************************************************************************************** 

% Function 
%   PLOTS projection of test data using weights and bias determined by the mean 
%   separator neural network 
% 
% Use: plotMS(num_class,num_features,classData,classData_norm) 
% 
% Input   num_class:        number of signal classes 
%        num_features:     number of distinguishing features 
%        classData:        class data training set 
%        classData:        class data training set (normalized - Method2) 
% 
% Limitations: can plot only 1 feature classes 
% 
% Returns (none) 
% 
% 12 January 2000 
% Miguel G. San Pedro 
o**************************************************************************************** 

global gloUsrReq 

wl = []; 
if (gloUsrReq == 'N') 

userReq = input('Plot Mean Separator and Error surface and contours (Y/N):     ','s'); 
if (userReq == 'Y') 

f = [ 'meansep_spl'; ' meansep_sp2 ' ,- 'meansep_sp3 ' ; 'meansep_sp5 ' ] ; 
wl = inputfEnter weight/bias range (default -100:100):      ') ; 
bl = wl; 
if (isempty(wl)) 

wl = [-50:.25:50] ; 
bl = wl; 

end 
for k = 1:4 

for m = l:num_class 
mnum_feat = m*num_features; 
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for mm = m+l:num_class 
mmnum_feat = mm*num_features; 
if (k ~= 2) 

ell = classData(mnum_feat - num_features + l:mnum_feat,:); 
cl2 = classData(mmnum_feat - num_features + 1:mmnum_feat,:); 
p = [cll;cl2]; 

else 
ell = classData_norm(mnum_feat - num_features + l:mnum_feat, :); 
cl2 = classData_norm(mmnum_feat - num_features + l:mmnum_feat, :) 
p = [cll;cl2]; 

end 
errsurf_sp(p,wl,bl,f (k, :) ) ; 

end 
end 

end 
end 

end 

return 

function m = errsurf_sp(p,wv,bv,f) 

% Function 
%   PLOTS the error surface and error contours of a mean seperator neural network over a 
%   range of weights and biases 
% 
% Use    m = errmesh_sp(p,wv,bv,f) 
% 
% Input   p:  2xQ matrix of input vectors.  First row - feature of class 1; second row - 
% feature of class 2 in second row 
%        wv: column vector of weights 
%        bv: column vector biases 
%        f:  transfer function (optional, default - meansep_sp5) 
% 
% Returns m: matrix of error values over wv and bv. 
% 
% Example 
%      p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 + 6.1; 
% +0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0]; 
%      WV = (-1:.1:1)'; 
%      bv = (-2.5:.25:2.5) 
%     es = errmesh_sp(p,wv,bv,'meansep_sp5'); 
% 
% 5 January 2000 
% Miguel G. San Pedro 

if nargin < 3,error('Not enough input arguments.');end 
if (nargin == 3) 

'meansep_sp5', 
end 

[pRow,pCol] = size(p); 
pl = P(l,:); 
p2 = p(2,:); 

if (f == 'meansep_spl') 
t = -400; 

end 
if (f == 'meansep_sp2') 

t = -400; 
f = 'meansep_spl'; 

end 
if (f == 'meansep_sp5') 

% for meansep_sp2, refer to notes in meansep_sp2 function 
% code 

% for MSNN norm proj var, no identifiable optimum value. 
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% Algorithm is such that want to increase mean spread and 
% decrease sum of variance. Result wanted is large 
% magnitude for value of performance parameter. Therefore, 
% set t=0 ==> error plot and performance plot are the same, 

t = 0; 
end 

m = zeros (length (bv) , length (wv) ) ,- 
for k = 1:length(wv) 

for kk = 1:length(bv) 
pp(kk,k) = feval(f,pl,p2,wv(k),bv(kk)); 
if (f == 'meansep_sp3') 

if (pp(kk,k) <= 400) 
t = 0; 

else 
t = 1600; 

end 
end 
m(kk,k) = (t - pp(kk,k) )'"2;  % squared error calculation 

end 
end 

% PLOT performance parameter suface and contours 
figure 
orient landscape 
subplot(221) 
grid 
mesh(bv,wv,pp) 
xlabel('bias') 
ylabel('weight') 
zlabeK'Mean Separator') 
title (['Performance Parameter Surface C,f,')']) 

subplot(222) 
grid 
contour(bv,wv,pp,10) 
xlabel('bias') 
ylabel('weight') 
titlet['Performance Parameter Contours C,f,')']) 

% PLOT error surface and contours 
subplot(223) 
grid 
mesh(bv,wv,m) 
xlabel('bias') 
ylabel('weight') 
zlabel('error') 
titlet['Error Surface C,f,')']) 

subplot(224) 
grid 
contour(bv,wv,m,10) 
xlabel('bias') 
ylabel('weight') 
title(['Error Contours C,f,')']) 

return 

dispProjection.m, plotProjection.m, dispWeightBias.m 
function dispProjection(o,r,numTestPts,method) 

%**************************************************************************************** 

% 
% 
% 

Function 
DISPLAYS the projection of 
separator neural network 

test data using weights and bias determined by the mean 
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% Use: dispProjection(o,r,numTestPts,method) 
% 
% Input   o:        matrix of all test data projection 
%        r:        matrix of class identification projection 
%        numTestPts: number of test data points 
%        method:    method number 
% 
% Returns (none) 
% 
% 12 January 2000 
% Miguel G. San Pedro 

% DISPLAY class type identifiers and testing data projection (considers each class 
% separately) 

[n,all_classes] = size(o); 
num_class = all_classes/numTestPts - 1;     % -1 so do not count noise block as a 

% distinct class 
for k = l:num_class 

knumTestPts = k*numTestPts; 
data = o (:, knumTestPts - numTestPts + 1:knumTestPts) ,- 

disp(['r',num2str(k) , ' = ' ,num2str (r (: ,k) ') ] ) 
disp(['o',num2str(k) , ' = ']) 
disp(num2str(data')) 
dispC ') 

end 

return 

function plotProjection(o,r,numTestPts,method, fig) 

J»4*t*i»*t**»t«***nHH*tt*M»***t*iiHiM»mi*»H**iiH«»»**ii*mtH»*i»HiiiiMMH 

% Function 
%   PLOTS projection of test data using weights and bias determined by the mean 
%   separator neural network 
% 
% Use: plotProjection(o,r,numTestPts,method, fig) 
% 
% Input   o:        matrix of all test data projection 
%        r:        matrix of class identification projection 
%        numTestPts: number of test data points 
%        method:    method number 
%        fig:      figure number 
% 
% Limitations: - o and r can only contain 3 rows of data 
% - only 5 classes can be plotted 
% 
% Returns (none) 
% 
% 12 January 2000 
% Miguel G. San Pedro 

[n,all_classes] = size(o); 
num_class = all_classes/numTestPts - 1;     % -1 to discount noise block as a distinct 

% class 
% limit number of classes to plot to 5 
if (num_class > 5) 

num_class = 5; 
end 
plot_char = [ 'b*'; 'r+'; 'go',- 'cs',- 'md' ] ; 

figure(fig) 
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orient tall 
for k = l:num_class 

% considers each class separately 
knumTestPts = k*numTestPts; 
data = o(:,knumTestPts - numTestPts + 1:knumTestPts); 

subplot(211) 
plot3(data(1,1:5:length(data)),data(2,1:5:length(data)),data(3,1:5:length(data)) , 

plot_char(k,:)) 
hold on 
plot3(r(l,k),r(2,k),r(3,k),plot_char(k,:)) 

subplot(234) 
plot(data(l,l:5:length(data)),data(2,l:5:length(data)),plot_char(k,:)) 
hold on 
plot(r(l,k),r(2,k),plot_char(k,:)) 

subplot(235) 
plot(data(2,1:5:length(data)),data(3,1:5:length(data)),plot_char(k,:)) 
hold on 
plot(r(2,k),r(3,k),plot_char(k,:)) 

subplot(236) 
plot(data(l,l:5:length(data)),data(3,1:5:length(data)),'b*') 
hold on 

- plot(r(l,k),r(3,k),plot_char(k,:)) 
end 

subplot(211) 
titled'Test Data Projection (Method',num2str (method),')']) 
xlabel('feature 1') 
ylabel('feature 2') 
zlabel('feature 3') 
box on 
grid on 
hold off 

subplot(234) 
grid on 
xlabel('feature 1') 
ylabel('feature 2') 
hold off 

subplot(235) 
grid on 
xlabel('feature 2') 
ylabel('feature 3') 
hold off 

subplot(236) 
grid on 
xlabel('feature 1') 
ylabel('feature 3') 
hold off 

return 

function dispWeightBias(w,b) 

a**************************************************************************************** 

% Function 
%   DISPLAYS weights and biases determined during training phase 
% 
% Use:  dispWeightBias(w,b) 
% 
% Input   w:        projection weight vector 
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%        b:        projection bias 
% 
% Returns (none) 
% 
% 27 December 1999 
% Miguel G. San Pedro 
%*************************************************st***»*****tti.jnt»v,1.*tttti,1.1.tvtl.jl.<tlt4.1.tii 

[num_prwise,num_class]   = size(w); 

% DISPLAY weights/bias and class  type identifiers 
for k = l:num_class 

disp(['wNN',num2str(k),'   =   [',num2str(w(:,k)'),'] bNN',num2str(k),   '   =   ',... 
num2str(b(k)) ]) ,- 

dispC   ') 
end 

return 

B.       CLASSIFICATION METHODS 

This section contains the programs used to determine the classification capability 

of the specific signal typing methods. 

1.        Statistical Classifier 

a.        statClassifier.m 
function statClassifier(num_data,num_class/num_features,... 

class_mean,class_cov) 

% Function 
%   USES quadratic classifier to type classes 
% 

% Use: statClassifier(num_data,num_class,num_features,class_mean,class_cov) 
% 
% Input   num_data:        number of training realizations 
%        num_class:       number of signal classes 
%        num_features:     number of distinguishing features 
%        class_mean:       feature mean values 
%        class_cov:        feature covariance matrix 
% 
% Returns (none) 
% 
% 7 March 2000 
% Miguel G. San Pedro 

% LOAD test points 
load test\testClass.dat 

[testRow,testData] = size(testClass); 
if (10*num_data -= testData) 

dispC*** DATA ERROR ***') 
end 

% SET class a priori probabilities for equiprobably classes 
P = l/num_class; 

% LOAD stat classifier confusion matrix 
load typeStat.dat 
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data = [] ; 
tempMat = [ ] ; 
for k = l:num_class 

knum_feat = k*num_features; 
data = testClass(knum_feat - num_features + 1:knum_feat,:); 

distMat = [] ; 
for kk = l:num_class 

kknum_feat = kk*num_features; 
dist = classDist(data,P,class_mean(: ,kk),... 

class_cov(:,kknum_feat - num_features + l:kknum_feat)); 
distMat = [distMat;dist]; 

end 

type = zeros(1,num_class); 
for kk = l^estData1 

[y index] = min(distMat(:,kk),[],1); 
type(index) = type(index) + 1; 

end 

disp(['TYPE',num2str(k), ': ',num2str(type)]) 

[Statrow,Statcol] = size(typeStat); 
tempStat = typeStat(Statrow-(num_class-k),:); 
tempStat = tempStat + type; 
tempMat = [tempMat;tempStat]; 

end 

typeStat = [typeStat;tempMat]; 
save typeStat.dat typeStat -ascii -tabs 

return 

b.        ClassDist.m 
function [dist] = classDist(data,classProb,classMean,classCov) 

%**** ************************************** ********************************* *** ********** 
% Function 
% - DETERMINES classification distance for test data wrt to a particular class' 
%   statistics (as discussed by Brunzell/Eriksson) 
% - distance parameter given by 
%     di(x) = ln(det(classCov)) - 2*lnP + (x-classMean)'*inv(classCov)*(x-classMean) 
% 
% Use: [dist] = classDist(data,classProb/ClassMean,classCov) 
% 
% Input   data:     m-dimensional test data to be typed (m rows) 
%        classProb: class a priori probability 
%        classMean: mxl vector of class feature mean values 
%        classCov:  mxm covariance matrix for class features 
% 
% Returns dist:     distance for each test data point 
% 
% 7 January 2000 
% Miguel G. San Pedro 
st**************************************************************************************** 

[dataRow,dataCol] = size(data); 

dist = []; 
cl = log(det(classCov)) - 2*log(classProb); 
c2 = inv(classCov) ,- 
for k = 1: dataCol 

c3 = data(:,k) - classMean; 
dist(k) = cl + c3'*c2*c3; 

end 
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return 

Perceptron 

a.        percptmClassifier.m 
function percptrnClassifier(num_class,snr,classData,w,b) 

%**************************************************************************************** 
% Function 
%   USES quadratic classifier to type classes 
% 
% Use: percptrnClassifier(num_class,classData,w,b) 
% 
% Input   num_class: number of signal classes 

snr:      signal snr 
%        classData: class data training set 
%        w:        projection weight vector 
%        b:        projection bias 
% 
% Returns  (none) 
% 
% 15 January 2000 
% Miguel G. San Pedro 
%*********************************•****************************************************** 

[totFeatures,numData] = size(classData); 
numFeatures = totFeatures/num_class; 

% TRAINING PHASE 
% ORGANIZE input/target vector 
p = []; 
t = [1,- 
target = detTargVect (num_class) ,- 
for k = l:num_class 

knumFeat = k*numFeatures; 
p = [p classData(knumFeat - numFeatures + 1:knumFeat,:)] ; 
t = [t target):, [k*ones(l,nurtiData) ])] ; 

end 

[numNeurons,tCol] = size(t); 
if (tCol -= num_class*numData) 

dispC*** DATA ERROR') 
end 

net = newp(minmax(p) »numNeurons, 'hardlim', 'learnp') ,- 
w = w' ,- 
w = w([ones(1,numNeurons)],:),- 
net.iw{1,1} = w; 
net.b(l)   = b([ones(1,numNeurons)],:); 
net.trainParam.epochs = 2500; 
figure 
[net,tr]   =  train(net,p,t); 

dispCFinal neuron weights and bias') 
wNN = net.iw{l,1} 
bNN = net.bQ} 

maxEpoch = max(tr.epoch); 
load snrEpoch.dat 
snrEpoch = [snrEpoch; snr maxEpoch]; 
save snrEpoch.dat snrEpoch -ascii -tabs 

load ..\test\testclass.dat 
[testRow,numTestData] = size(testClass); 
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if(testRow -= numFeatures*(num_class+l)) 
disp ( ' * * * DATA ERROR' ) 

end 

% TESTING PHASE 
% REORGANIZE testClass to place blocks of class test data in a row vice in a column 
pTest = [ ] ; 
for k = l:num_class+l 

knumFeat = k*numFeatures; 
pTest = [pTest testClass(knumFeat - numFeatures + 1:knumFeat,:)]; 

end 
tTest = sim(net,pTest); 

% COUNT results 
typel = zeros (num_class+l, num_class) ,- 
noTypel = 0; 
for k = 1:(num_class+l)*numTestData 

typeRow = ceiKk/numTestData) ; 
index = bi2de(flipud(tTest(:,k))'); 
if ((index == 0)|(index > num_class)) 

if (typeRow <= num_class) 
noTypel = noTypel +1;  % do not count noType if random test data 

end 
else 

typel(typeRow,index) = typel(typeRow,index) + 1; 
end 

end 

% DISPLAY test data class typing 
for m = l:num_class+l 

disp(['type',num2str(m),': ',num2str(typel(m, :)) , '      ',num2str(numTestData)]) 
end 
disp(['no type: ',num2str(noTypel)]) 
dispC ') 

load type.dat 
type = type + typel; 
save type.dat type -ascii -tabs 

load noType.dat 
noType = noType + noTypel; 
save noType.dat noType -ascii -tabs 

return 

b.        detTargVectm 
function [target] = detTargVect(num_class) 

^t* ************************************************************************* * ************ 

% Function 
%   DETERMINES perceptron target vector 
% 
% Use: [target] = detTargVect(num_class) 
% 
% Input   num_class: number of signal classes 
% 
% Returns target:    vector of unique binary class representations 
% 
% Example:    num_class = 6; 
% [target] = detTargVect(num_class) 
% class =[123456] 
% target =   [000111; 
% 0  110  0  1; 
% 10  10  10] 
% 
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% 15 January 2000 
% Miguel G. San Pedro 
!^* ************************** H*4UH»»»H»**tH«*(«»»*tH»*lH**H*H»*H*»*«»«**),***».i, 

class = [l:num_class] ,- 
[target] = flipud(de2bi(class)'); 

return 

3.        Common Mean Separator Programs 

a.        simmsnn.m 
function simmsnn(f,method,classData,num_features,w,b,tp,fig) 

% Function 

%   SIMULATES the mean separator neural network with performance parameter defined by 
%   function f 
% 

% Use: simmsnn(f»method,classData,num_features,w,b,tp,fig) 
% 

% Input   f: mean separator neural network function method 
%        method: mean separator variation number 
% 1 - standard 
% 2 - preconditionied input (Mod 1) 
% 5 - normalized projection (Mod 2) 
% 8 - with VMR termination (Mod 3) 
%        classData: training data 
%        w: projection weight vector 
%        b: projection bias 
%        tp: training parameters -(see function trms_sp) 
%        fig: figure number 
% 
% Returns  (none) 
% 
% 6 March 2000 
% Miguel G. San Pedro 
%**********************************************************i,iti:tf,i,i,t,****************i,***** 
global gloUsrReq 

[classRow,num_data] = size(classData); 
num_class = classRow/num_features; 
num_prwise = sum(l:num_class-l);     % number of pairwise comparisons 
ind =0; % pairwise index 
r = zeros(num_prwise,num_class);     % class type identifier 

%***********************************************************i,ti,1ri,tiri,iCi,nririri,*irirtirtirttti:t + ir 

% COMPARE class k and class kk 
for k = l:num_class 

knum_feat = k*num_features; 
for kk = k+l:num_class 

kknum_feat = kk*num_features; 
ind = ind + 1; 

classl = classData(knum_feat-num_features+l:knum_feat, :) ,- 
class2 = classData(kknum_feat-num_features+l:kknum_feat,:); 
pi = [classl;class2]; 

disp(['Class ',num2str(k),' vs Class ',num2str(kk)]) 
fig = fig+1; 
[wNN(:,ind),bNN(ind)] = feval(f,w,b,pi,tp,method,fig); 

% DETERMINE class type identifier for this pairwise comparison 
for mm = l:num_class 

mmnum_feat = mm*num_features; 
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classA = classData(iramum_feat-num_features+l:mrnnum_feat, 
r(ind,mm)   =  20*mean(logsig(wNN(:,ind)'*classA + bNN(ind)! 

% DETERMINE projection data for neuron maps 
plotr =   [plotr 20*logsig(wNN(:,ind)'*classA + bNN(ind))- 

-10; 

10]; 

end 

% PLOT neuron maps 
figure 
plot(plotr) 
xlabelCTest Point') 
ylabeK ['Neuron Map [' ,num2str (k) , ', ' ,num2str(kk) ,']']) 

end 
end 

% DISPLAY weights/bias and class type identifiers 
if (gloUsrReq == 'N') 

userReq = input!'Display projection weights and biases (Y/N): 
if (userReq == 'Y') 

dispWeightBias(wNN.bNN) 
end 
dispC ') 

end 

','s'); 

************** ************************************************************************** 
% CLASSIFY test points 
load ..\test\testClass.dat 
[testRow,testData] = size(testclass); 
if (testRow -= num_features*(num_class+l)) 

disp('*** DATA ERROR') 
end 

% REORGANIZE test data into a matrix with dimensions 
% 'num_features'x'num_class'*'num_data' 
testCl = [ ] ; 
for m = l:num_class+l 

testCl = [testCl testClasst(m-1)*num_features+l:m*num_features,:)]; 
end 
[testRow,totTestData] = size(testCl); 
if ((testRow -= num_features)|(totTestData -= (num_class+l)»testData)) 

disp('* * * DATA ERROR') 
end 

% PROJECT/TYPE testclass data 
% 'diff matrices store distances from class type identifiers (r's) to data projections 
% (o's) determine best fit (i.e. trial data typing) by deteriming minimum value of each 
% row 
% 2nd dimension of r gives number of classes, testData gives number of test data points 
% taking column number of each testProj point and performing ceil(colNum/testData) gives 
% class number 

testProj = []; 
typel = zeros(num_class+l,num_class); 

if (gloUsrReq == 'N') 
userReq = input('Display typing distance data (Y/N):    ','s'); 

else 
userReq = 'N'; 

end 
for m = 1:totTestData 

for mm = l:num_prwise 
o(mm,m) = 20*logsig(wNN(: ,mm)'*testCl(:,m)+bNN(mm))-10; 

end 
testProj = [testProj o(:,m)]; 
diff = []; 
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for mm = l:num_class 
dist = o(:,m) - r(:,mm); 
diff = [diff dist'*dist]; 

end 
[y index] = min(diff,[],2); 
classNumber = ceil(m/testData); 
typeKclassNumber,index) = typel(classNumber,index) + 1; 

,num2str(index), ',num2str(y)]) 

',num2str(testData) ]) 

if (userReq == 'Y') 
disp([num2str(diff) , ' 
if (mod(m,testData)==0) 

disp('****') 
end 

end 
end 
disp (' ') 

% DISPLAY test data class typing 
for m = l:num_class+l 

disp(['type',num2str(m),': ',num2str(typel (m, :)), 
end 
dispC ') 

load type.dat 
type = type + typel; 
save type.dat type -ascii -tabs 

% PLOT class type identifier and test data projections 
% NOTE:  1.  can only plot first three features 
%       2.  testProj also includes projection of non- 
% class data 
if (gloUsrReq == 'N') 

userReq = input ('Plot projections (Y/N) :  ','s'),- 
if (userReq == 'Y') 

fig = f ig+1 ,- 
plotProjectionttestProj(1:3,:),r(1:3,:),testData,method,fig) 

end 
dispC ') 

end 

% DISPLAY class type identifier and test data projections 
% NOTE:   testProj also includes projection of non-class data 
if (gloUsrReq == 'N') 

userReq = input('Display projection data (Y/N):  ','s'); 
if (userReq == 'Y') 

dispProjection(testProj,r,testData,method) 
end 
disp(' ') 

end 

return 

b.        logsig.m 
function a = logsig(n,b) 

% where to put: c:\matlab\work\test 
%LOGSIG Log sigmoid transfer function. 
% 
%      LOGSIG(N) 
%       N - SxQ Matrix of net input (column) vectors. 
%     Returns the values of N squashed between 0 and 1. 

% EXAMPLE: n = -10:0.1:10; 
a = logsig(n); 
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% 

plot(n,a) 

LOGSIG(Z,B) ...Used when Batching. 
Z - SxQ Matrix of weighted input (column) vectors. 
B - Sxl Bias (column) vector. 

Returns the squashed net input values found by adding 
B to each column of Z. 

LOGSIG('delta') returns name of delta function. 
LOGSIG!'init') returns name of initialization function. 
LOGSIG('name') returns full name of this transfer function. 
LOGSIG('output') returns output range of this function. 

See also NNTRANS, BACKPROP, NWTAN, LOGSIG. 

% Mark Beale, 1-31-92 
% Revised 12-15-93, MB 
% Copyright (c) 1992-94 by The MathWorks, Inc. 
% $Revision: 1.1 $  $Date: 1994/01/11 16:25:39 $ 

if nargin < 1, error('Note enough arguments.'); end 

if isstr(n) 
if strcmp(lower(n),'delta') 

a = 'deltalog'; 
elseif strcmp(lower(n),'init') 

a = 'nwlog'; 
elseif strcmp(lower(n),'name') 

a = 'Log Sigmoid'; 
elseif strcmp(lower(n),'output') 

a = [0 1];. 
else 

error('Unrecognized property.') 
end 

else 
if nargin==2 

[nr,nc] = size(n),- 
n = n + b*ones(l,nc); 

end 
a = 1 ./ (l+exp(-n)); 

end 

c.        sigderiv.m 
function d=sigderiv(n) 

a*********************************************************** 
% This function calculated the derivative of logsig function 
% where to put: c:\matlab\work\test 
%*********************************************************** 

d=exp(-n)./((l+exp(-n))."2); 
i = find(~finite(d)); 
d(i) = 0; 

4.        Standard Mean Separator 

a.        trmsjsp.m 
function   [wl,bl]   =  trms_sp(wl,bl,p,tp,method,fig) 

ft**************************************************************************************** 

% Function 
%   TRAINS the mean separator neural network with performance parameter defined as 
%     MD = -[E{20*logsig(w'*x+b)-10} - E{20*logsig(w'*y+b)-10}]"2 
%   to determine weight and bias for optimal projection 
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Use:  [wl,bl] = trms_sp(wl,bl,p,tp,fig) 

Input wl: 
bl: 
P = 
tp: 
method: 

fig: 

initial weight vector (3x1) 
initial bias (lxl) 
matrix of training data for two classes 
training parameters (see below) 
mean separator variation number 
1 - standard 
2 - preconditioned input (Mod 1) 
5 - normalized projection (Mod 2) 
8 - with VMR termination (Mod 3) 
figure number 

optimized weight vector 
optimized bias 

Returns wl: 
bl: 

26 February 2000 
Miguel G. San Pedro 

MEAN SEPARATOR training function 
GENERAL EQUATION 

MD(w,b) = -[mean(20*logsig{w'*x+b)-10) - mean(20*logsig{w'*y+b}-10)]"2 
= -[20*mean(logsig{w'*x+b})-10 - 20*mean(logsig{w'*y+b}) + 10]~2 
= -400[mean(logsig{w'*x+b})- mean(logsig{w'*y+b})]~2 
= -400[mean(logsig{w'*x+b} - logsig{w'*y+b})]~2 

DETERMINE gradient by 
dMD/dw = c*dl 
with c = -800[mean(logsig{w'*x+b) - logsig{w'*y+b))] 

dl = mean(der_logsig{w'*x+b}*x-der_logsig{w'*y+b}*y,2) 

dMD/db = c*d2 
with d2 = mean(der_logsig{w'*x+b}-der_logsig{w'*y+b}) 

Training parameters(tp) 
tp(l) 
tp(2) 
tp(3) 
tp(4) 
tp(5) 
tp(6) 
tp(7) 

epochs between updating display 
maximum number of epochs to train 
initial lerning rate 
learning rate increase 
learning rate decrease 
momentum constant 
maximum error ratio 

ttimittitJitmHtHHmjtiiiijJMjjHHHHHiiHMtHHHmiJijjmHijHii ****** 

global gloUsrReq 
global gloUsrPlot 

% TRAINING PARAMETERS 
df = tp(l); 
me = tp(2) 
lr = tp(3) 
im = tp(4) 
dm = tp(5) 
mc = tp(6) 
er = tp(7) 

dwl = 0; 
dbl = 0; 
MC = 0; 
[pRow,pCol] = size(p); 

nx = zeros(pRow/2,pCol); 
ny = nx,- 
nx(l:pRow/2, :) = p (1 :pRow/2, : ) ; 
ny(l:pRow/2, :) = p(l+pRow/2:pROW, : ) ; 
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logsig_x = logsig(wl'*nx+bl); 
logsig_y = logsig(wl'*ny+bl); 

a = -400* (mean(logsig_x - logsig_y,2))"2; 

% CHECK how weights and bias are changing 
%1oad ..\checkWB.dat 

% TRAINING 
if (gloUsrReq == 'N') 

userReq = input('Display PROJ_INDEX update message (Y/N):       ','s'); 

else 
userReq = 'N'; 

end 
if (userReq == 'Y') 

message = sprintf('TRAINMSNN: %%g/%g epochs, PROJ_INDEX = %%g.\n',me); 
fprintf(message,0,a) 
dispd'lr = ' ,num2str(lr) ]) 

end 

ctr_repeat = 0; 
go_on = 1; 
ii = 1; 
a_save = 0; 
plot_a_save = 0; 
plot_lr_save = 0; 
wl_save = rand(pRow/2,1); 
bl_save = rand (1) ,- 
while(go_on==l) 

% LEARNING PHASE 
[dwl,dbl] = lrms_sp(wl,bl,p,dwl,dbl,lr,MC) ; 

% stepsize (alpha in steepest descent algorithm) incorporated as last step in lrms_sp 
new_wl  = wl-dwl,- 
new_bl  = bl-dbl; 
new_a =  -400*(mean(logsig(new_wl'*nx+new_bl)   -  logsig(new_wl'*ny+new_bD,2))~2; 
MC = mc; 

% PRESENTATION PHASE 
if (new_a > a/er) 

lr = lr*dm; 
MC = 0; 

else 
if (new_a < a) 

lr = lr*im; 
end 
wl = new_wl; 
bl = new_bl; 
a = new_a; 

end 
%  checkWB =[checkWB; [a wl' bl]]; 

% TRAINING RECORD 
% PLOTTING 
plot_a(ii) = a; 
plot_lr(ii) = lr; 

% DISPLAY performance parameter 
if (userReq == 'Y') 

if (rem(ii,df) == 0) 
fprintf(message,ii,a) 
disp(['lr= ',num2str(lr)]) 

end 
end 

% if lr falls below minimum allowable (no learning being accomplished), break out of loop 
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% if final MD > -360, reset loop counter, choose new initial weights and bias and repeat 
% loop 

if ((lr < le-4)|(ii == me)) 
if (abs(a_save) < abs(a)) 

a_save = a; 
wl_save = wl; 
bl_save = bl; 
plot_a_save = plot_a; 
plot_lr_save = plot_lr; 

end 
if ((a_save > -360)&(ctr_repeat <= 10)) 

ii = 0; 
plot_a = [] ; 
plot_lr = []; 
wl = randn(pRow/2,1); 
bl = randn(l,l); 

a = -400*(mean(logsig(wl'*nx+bl) - logsig(wl' *ny+bl) ,2)) "2-, 

dwl = 0; 
dbl = 0; 
MC = 0; 
lr = tp(3); 
ctr_repeat = ctr_repeat+l; 

%       checkWB = [checkWB; 0001 zeros(size(wl')) NaN]; 
if (userReq == 'Y') 

dispC*** INSUFFICIENT PROJECTION INDEX ***') 
dispC ') 

end 
else 

go_on = 0; 
end 

end 
ii = ii+1; 

end 

disp(['num epochs =',num2str(ii-1)]) 
disp(['lr = ' ,num2str(lr) ]) 
disp(['MD = ',num2str(a_save)]) 

wl = wl_save; 
bl = bl_save,- 
disp(' ') 

if (gloUsrPlot == 'Y') 
figure(fig) 
orient tall 
subplot(211) 
plot(plot_a_save) 
xlabel('time') 
ylabeK'MD') 
title(['MDvs time (Method',num2str(method),')']) 
grid on 

subplot(212) 
plot(plot_lr_save) 
xlabel('time') 
ylabel('lr') 
titlet['learning rate vs time (Method',num2str(method),')']) 
grid on 

end 

%checkWB = [checkWB; 0001 ones(sizetwl')) NaN] ; 
%save ..\checkWB.dat checkWB -ascii -tabs 

return 
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% Input 
% 

w: 
b: 

% 
% 

P = 
dwl: 

% dbl: 
% lr: 
% ItlC: 

 b.        lrms_sp.m  
function [dw,db] = lrms_sp(w,b,p,dwl,dbl,lr,mc) 

%**************************************************************************************** 
% Function 
%   Learning rate function for the mean separator neural network with performance 
%   parameter defined as 
%     MD = -[E{20*logsig(w'*x+b)-10} - E{20*logsig(w'*y+b)-10}]~2 
%   to determine change in weight and bias for optimal projection 
% 
% Use:  [dw,db] = lrms_sp(w/b,p,dwl,dbl,lr,mc) 
% 

weight vector (3x1) 
bias (1x1) 
matrix of training data for two classes 
current change in weight 
current change in bias 
learning rate 
momentum constant 

% 
% Returns dw:       weight vector change (3x1) 
%        db:       bias change (lxl) 
% 
% 16 January 2000 
% Miguel G. San Pedro 
a**************************************************************************************** 

[pRow,pCol] = size(p); 
nx = zeros(pRow/2,pCol); 
ny = nx; 
nx(l:pRow/2,:) = p(l:pRow/2,:); 
ny(l:pRow/2,:) = p(pRow/2+l:pRow,:); 

logsig_x = logsiglw'*nx+b) ,- 
logsig_y = logsigtw'*ny+b); 
der_logsig_x = sigderiv(w'*nx+b); 
der_logsig_y = sigderiv(w'*ny+b); 

dll = []; 
dll = der_logsig_x([ones(l,pRow/2)],:); 
dl2 = []; 
dl2 = der_logsig_y([ones(l,pRow/2)],:); 
dl = mean(dll.*nx - dl2.*ny,2); 

c = -800*(mean(logsig_x,2) - mean(logsig_y,2)); 
dw = c*dl; 
db = c*mean(der_logsig_x - der_logsig_y,2); 

% APPLY adaptive lr and stepsize 
dw = mc*dwl + (1-mc)*lr*dw; 
db = mc*dbl + (1-mc)*lr*db; 

return 

meansep_spl 

function a = meansep_spl(pl,p2,w,b) 

% Function 
%   CALCULATES the mean separator neural network with performance parameter defined as 
%      MD(w,b) = -[mean(20*logsig{w'*x+b}-10) - mean{20*logsig(w'*y+b)-10}]~2 
% 
% Use:  a = meansep_spl(pl,p2,w,b) 
% 
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% Input pi: row feature vector for first class 
% P2: row feature vector for second class 
% w: weight vector 
% b: bias 
% 

% Returns a: mean separator performance parameter value 

% 5 January 2000 
% Miguel G. San Pedro 
V»»«.«.«H*...n.H»»,ll»tl,»1„„HH,H,(rir„»H„„M)r,1,HttHHM1HtHjMH 

if nargin < 3, error('Not enough arguments.'); end 

alpha = logsig(w'*pl + b) ; 
beta = logsig(w'*p2 + b); 
a = -400*(mean(alpha - beta,2))A2; 

return 

5. Preconditioned Input Data (MSNN Mod 1): simmsnnjC.m 
function simmsnn_C(classData_norm,num_features,w,b,tp,fig) 

% Function 

%   SIMULATES the mean separator neural network with performance parameter defined as 
% MD =  -[E{20*logsig(w'*[(x-mean(x))/sd(x)+mean(x)]+b)-10} 
% - E{20*logsig(w'*[(y-mean(y))/sd(y)+mean(y)]+b)-10}]"2 
% 
% Use:   siinmsrm_C (classData_nom,nuin_f eatures ,w,b,tp, fig) 
% 
% Calls       trms_sp and lrms_sp since equations are same;   only input vectors differ 
% 
% Input   classData_norm:   normalized training data 
%        w: projection weight vector 
%        b= projection bias 
%        CP= training parameters (see function trms_sp2) 
*        fig: figure number 
% 
% Returns  (none) 
% 
% 23 February 2000 
% Miguel G. San Pedro 

global gloUsrReq 

method = 2; 

[classRow,num_data] = size(classData_norm) ,- 
num_class = classRow/num_features; 
numjprwise = sum(l:num_class-l);     % number of pairwise comparisons 
ind - 0; % pairwise index 
r = zeros(num_prwise,num_class);     % class type identifier 

i*...H,.»H,«„,»„„„„)„1H»„1,„H,H,HtH,HM4HMiiHtHH(HHJri4Ht4iiHMi 

% COMPARE class k and class kk 
for k = l:num_class 

knum_feat = k*num_features; 
for kk = k+l:num_class 

kknum_feat = kk*num_f eatures ,- 
ind = ind + 1; 

classl = classData_norm(knum_feat-num_features+l:knum_feat,:); 
class2 = classData_norm(kknum_feat-num_features+l:kknum_feat, :) ,- 
pi = [classl,-class2] ; 
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disp(['Class ',num2str(k),' vs Class ',num2str(kk)]) 
fig = fig+1; 
[wNN(:,ind),bNN(ind) ] = trms_sp(w,b,pi,tp,method, fig) ; 

% DETERMINE class type identifier for this pairwise comparison 
for mm = l:num_class 

mmnum_feat = mm*num_features; 
classA = classData_norm(mmnum_feat-num_features+l:mmnum_feat, :) ,- 
r(ind,mm) = 20*mean(logsig(wNN(:,ind)'*classA + bNN(ind)))-10; 

% DETERMINE projection data for neuron maps 
plotr = [plotr 20*logsig(wNN(:,ind)'»classA + bNN(ind))-10]; 

end 

% PLOT neuron maps 
figure 
plot(plotr) 
xlabeK'Test Point') 
ylabel(['Neuron Map [',num2str(k),',',num2str(kk) ,']']) 

end 
end 

% DISPLAY weights/bias and class type identifiers 
if (gloUsrReq == 'N') 

userReq = input('Display projection weights and biases (Y/N):   ','s'); 
if (userReq == 'Y') 

dispWeightBias(wNN,bNM) 
end 
disp (' ') 

end 

%**************************************************************************************** 
% CLASSIFY test points 
load  ..\test\testClass_norm.dat 
[testRow, testData]   =  size (testClass_norm) ,- 

numTestData = testData/(num_class+l); 
if   (testRow -= num_features*num_class) 

dispC***   DATA ERROR') 
end 

% PROJECT/TYPE testClass data 
% 'diff matrices store distances from class type identifiers (r's) to data projections 
% (o's) determine best fit (i.e. trial data typing) by deteriming minimum value of each 
% row 
% 2nd dimension of r gives number of classes, testData gives number of test data points 
% taking column number of each testProj point and performing ceil(colNum/testData) gives 
% class number 

typel = zeros(num_class+l,num_class) ,- 

if (gloUsrReq == 'N') 
userReq = input('Display typing distance data (Y/N):    ','s'); 

else 
userReq = 'N' ,- 

end 

diffMat = []; 
for k = l:num_class 

knum_feat = k*num_features; 
xk = [knum_feat - num_features + l:knum_feat]; 
diffRow = []; 
for kk = 1:testData 

for mm = l:num_prwise 
o(mm,kk) = 20*logsig(wNN(:,mm)'*testClass_norm(xk,kk))-10; 
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end 
dist = o(:,kk) - r(:,k) ; 
diffRow = [diffRow dist'*dist] ,- 

end 
diffMat = [diffMat;diffRow]; 

end 
[y index] = min(diffMat,[],1); 

for k = l:num_class+l 
for kk = l:numTestData 

xx = (k-l)*numTestData+kk; 
typeKk, index (xx)) = typel (k, index (xx) )+l,- 

end 
end 
disp(' ') 

% DISPLAY test data class typing 
for m = l:num_class+l 

disp(['type',num2str(m),': ',num2str(typel(m, :))]) 
end 

load type.dat 
type = type + typel; 
save type.dat type -ascii -tabs 

% PLOT class type identifier and test data projections - option not permitted 

% PLOT class type identifier and test data projections - option not permitted 

return 

6.        Normalized Projection Space (MSNN Mod 2) 

a.        trmsjspS.m 
function [wl,bl] = trms_sp5(wl,bl,p,tp,method,fig) 

% Function 
% TRAINS the mean separator neural network with performance parameter defined as 
% MD = -[E{alpha - beta}]~2*[E{(alpha - E{alpha})"2) 
% + E{(beta - E{beta})~2} + delta]~-l 
% with alpha = logsig(w'*x+b), beta = logsig(w'*y+b), and delta precludes division by 
% zero, to determine weight and bias for optimal projection 
% NORMALIZES basic performance parameter (standard MSNN) by sum of projection 
% variances 
% 
% Use:  [wl,bl] = trms_sp5(wl,bl,p,tp,method,fig) 
% 
% Input   wl:       initial weight vector (3x1) 
% bl:       initial bias (lxl) 
% P=        matrix of training data for two classes 
% tp:       training parameters (see below) 
% method:    mean separator variation number 
% 1 - standard 
% 2 - preconditioned input (Mod 1) 
% 5 - normalized projection (Mod 2) 
% 8 - with VMR termination (Mod 3) 
% fig:      figure number 
% 
% Returns wl:       optimized weight vector 
% bl:       optimized bias 
% 
% 26 February 2000 
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San Pedro 
********* 

Miguel G. 
*********! 

MEAN SEPARATOR 
GENERAL EQUATION 

****************************************************************** 
training function 

MD(w,b) = -[E{20*logsig(w'*x+b)-10} - 
*[var(20*logsig(W x+b)-10 

= -[E{20*logsig(w'*x+b)-10} - 
*[E{(20*logsig(w'*x+b)-10 - 

+ E{(20*logsig(w'*y+b)-10 
= -[20*E{logsig(w'*x+b)}-10 - 

*[E{(20*logsig(w'*x+b)-10 - 
+ E{(20*logsig(w'*y+b)-10 

= -[E{logsig(w'*x+b)} 
*[E{(logsig(w'*x+b) 

E{20*logsig(W *y+b)-10}]"2 
+.var(20*logsig(w'y+b)-10) + delta]A-l 

E{20*logsig(w'*y+b)-10}]'2 
E{20*logsig(w'*x+b)-10})"2 
- E{20*logsig(w'*y+b)-10})Ä2 + delta]A-l 
20*E{logsig(W *y+b)+10}]"2 
20*E{logsig(w'*x+b)}+10)A2 
- 20*E{logsig(w'*y+b)}+10)A2 + delta]A-l 

E{logsig(w'*y+b)}]A2 
E{logsig(W *x+b)})"2} 

let alpha 

or, alpha 
note:  if 

+ E{ (logsig(w'*y+b) - E{logsig(W*y+b)})"2} + delta]A-l 
= logsig(w'*x+b), beta = logsig(w'*y+b) 

■[E{alpha} - E{beta}]"2*[E{(alpha - E{alpha})A2} + [E{(beta - E{beta})"2} 
+ delta]"1 

-[E{alpha - beta}]*2*[E{alpha~2 + beta"2} 
- EA2{alpha} - EA2{beta} + delta]"-1 

= -[E{alpha - beta}]A2/[var(alpha) + var(beta) + delta] 
den is infinitesimally small, delta = le-10 

% DETERMINE gradient by 
K      = E{alpha - beta}/(E{alphaA2 + betaA2} - EA2{alpha} - EA2{beta} + delta) 
dMD/dw = 2K[K*(E{alpha*dalpha/dw + beta*dbeta/dw} 

- E{alpha}E{dalpha/dw} - E{beta}E{dbeta/dw}) 
- E{dalpha/dw - dbeta/dw}] 

dMD/db = 2K[K*(E{alpha*dalpha/db + beta*dbeta/db} 
- E{alpha}E{dalpha/db} - E{beta}E{dbeta/db}) 
- E{dalpha/db - dbeta/db}] 

% 
% 
% 
% 
% 
% 
% 
% 
% Training parameters(tp) 

epochs between updating display 
maximum number of epochs to train 
initial lerning rate 
learning rate increase 
learning rate decrease 
momentum constant 
maximum error ratio 

<^* *************************************************************************************** 
global gloUsrReq 
global gloUsrPlot 

format short e 
delta = le-10; 

% tp(l) 
% tp(2) 
% tp(3) 
% tp(4) 
% tp(5) 
% tp(6) 
% tp(7) 
% 

% TRAINING PARAMETERS 
df = tp(l) 
me = tp(2) 
lr = tp(3) 
im = tp(4) 
dm = tp(5) 
mc = tp(6) 
er = tp(7) 

dwl = 0; 
dbl = 0; 
MC = 0; 
[pRow,pCol = size(p) ; 

nx = zeros(pRow/2,pCol); 
ny = nx; 
nx(l:pRow/2,:) = p(l:pRow/2,:); 
ny(l:pRow/2,:) = p(l+pRow/2:pRow, 
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alpha = logsig (wl' *nx+bl) ,- 
beta = logsig(wl' *ny+bl) ,- 

E_alpha = mean(alpha,2); 
E_beta = mean(beta,2); 
var_alpha = var (alpha, 1) ,- 
var_beta = var(beta,1); 

num = (E_alpha - E_beta)A2; 
den = var_alpha + var_beta; 
if (den < le-10) 

den = delta; 
end 
a = -num/den; 

% CHECK how mean and variance are updating 
%checkMD = [] ; 
%checkMD = [checkMD; [num den]]; 

% CHECK how weights and bias are changing 
%load ..\checkWB.dat 

% TRAINING 
if (gloUsrReq == 'N') 

userReq = input('Display PROJ_INDEX update message (Y/N):       ','s'); 
else 

userReq = 'N'; 
end 
if (userReq == 'Y') 

message = sprintf('TRAINMSNN: %%g/%g epochs, PROJ_INDEX = %%g.\n',me); 
fprintf(message,0,a) 
disp(['lr= ',num2str(lr)]) 

end 

ctr_repeat = 0; 
go_on = 1,- 
ii = 1; 
a_save = 0; 
plot_a_save = []; 
plot_lr_save = []; 
wl_save = rand(pRow/2,1) ,- 
bl_save = rand(1); 
GOODcheck = 0; 

while(go_on==l) 
% LEARNING PHASE 
[dwl,dbl] = lrms_sp5(wl,bl,p,dwl,dbl,lr,MC); 

% stepsize (alpha in steepest descent algorithm) incorporated as 
% last step in lrms_sp5 
new_wl = wl-dwl; 
new_bl = bl-dbl; 

new_alpha = logsig(new_wl'*nx+new_bl); 
new_beta = logsig(new_wl'*ny+new_bl); 

E_new_alpha = mean(new_alpha,2); 
E_new_beta = mean(new_beta,2); 
var_new_alpha = var(new_alpha, 1); 
var_new_beta = var(new_beta,1); 

new_num = (E_new_alpha - E_new_beta)~2; 
new_den = var_new_alpha + var_new_beta; 
if (new_den < le-10) 

new_den = delta; 
end 
new_a = -new_num/new_den; 
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MC = mc; 

% PRESENTATION PHASE 
if (new_a > a/er) 

lr 
MC 

eise 
if 

lr*dm; 
0; 

[a wl' bl]]; 
[num den]]; 

(new_a < a) 
lr = lr*im; 

end 
wl = new_wl; 
bl = new_bl; 
a = new_a; 
nuin = new_num; 
den = new_den; 

end 
%  checkWB =[checkWB; 
%  checkMD = [checkMD; 

% TRAINING RECORD 
% PLOTTING 
plot_a(ii) = a; 
plot_lr(ii) = lr; 

% DISPLAY performance parameter 
if (userReq == 'Y') 

if (rem(ii,df) == 0) 
fprintf(message,ii,a) 
disp(['lr = ',num2str(lr)]) 

end 
end 

% CHECK improvement in performance parameter 
if (abs(a_save) < abs(a)) 

a_save = a; 
wl_save = wl; 
bl_save = bl; 
plot_a_save = plot_a; 
plot_lr_save = plot_lr; 
lr = lr/0.9; % prevents stalling training trajectory 

% CALCULATE termination parameter 
% Termination parameter:  considered with ratio of difference in Q(+-0.005) pts 
% and difference of means 
% Assume Gaussian distribution 
% 1.65 gives 5.0% in tails 
% 1.95 gives 2.5% in tails 
% 2.52 gives 0.5% in tails 
GOOD_alpha = logsig(wl_save'*nx+bl_save); 
GOOD_beta = logsig(wl_save'*ny+bl_save); 

E_GOOD_alpha = mean(GOOD_alpha,2); 
E_GOOD_beta = mean(G00D_beta,2); 
var_GOOD_alpha = var(GOOD_alpha,1); 
var_GOOD_beta = var(GOOD_beta,l); 

GOODcheck 2.52*(sqrt(var_GO0D_alpha) + sqrt(var_GOOD_beta))... 
/abs(E_GO0D_alpha - E_GOOD_beta); 

end 

if ({lr < le-4)|(ii 
go_on = 0; 

end 
ii = ii+1; 

me)|(GOODcheck > 0.90)) 

% INCREMENT epoch counter 
end 
disp(['num epochs =',num2str(ii-1)]) 
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disp(['lr = ',num2str(lr)]) 
disp(['MD = ',num2str(a_save)]) 
disp(['VMR= ',num2str(G00Dcheck)]) 

wl = wl_save; 
bl = bl_save; 
disp (' ') 

if (gloUsrPlot == 'Y') 
figure(fig) 
orient tall 
subplot(211) 
plot(plot_a_save) 
xlabel('time') 
ylabel('MD') 
titlet['MD vs time (Method',num2str(method),')']) 
grid on 

subplot(212) 
plot(plot_lr_save) 
xlabel('time') 
ylabel('lr') 
title(['learning rate vs time (Method',num2str(method),')']) 
grid on 

end 

%checkWB = [checkWB; 0005 ones(size(wl')) NaN]; 
%save ..\checkWB.dat checkWB -ascii -tabs 

%save checkMD.dat checkMD -ascii -tabs 

return 

b.        Irms_sp5.m 
function [dw,db] = lrms_sp5(w,b,p,dwl,dbl,lr,mc) 

% Function 
% Learning rate function for the mean separator neural network with performance 
% parameter defined as 
% MD = -[E{alpha - beta}]"2*[E{(alpha - E{alpha})"2} + E{(beta - E{beta})"2} 
% + delta]Ä-l 
% with alpha = logsigtw1*x+b), beta = logsigtw'*y+b), and delta precludes division by 
% zero 
% note:  if den is infinitesimally small, delta = le-10 
% Determines change in weight and bias for optimal projection 
% 
% Use:  [dw,db] = lrms_sp5(w,b,p,dwl,dbl,lr,mc) 
% 
% Input   w: weight vector (3x1) 
%        b: bias (lxl) 
%        P= matrix of training data for two classes 
%        dwl: current change in weight 
%        dbl: current change in bias 
%        lr: learning rate 
%        mc: momentum constant 
% 
% Returns dw: weight vector change (3x1) 
%        db: bias change (lxl) 
% 
% 16 January 2000 
% Miguel G. San Pedro 

delta = le-10; 

186 



[pRow,pCol] = size(p); 
nx = zeros(pRow/2,pCol); 
ny = nx; 
nx(l:pRow/2,:) = p(1:pRow/2,:); 
ny(l:pRow/2,:) = p(l+pRow/2:pRow,:); 

alpha = logsig(w'*nx+b); 
E_alpha = mean(alpha,2); 
beta = logsig(w'*ny+b); 
E_beta = mean (beta, 2) ; 

dalpha_db = sigderiv (W *nx+b),- 
E_dalpha_db = mean(dalpha_db, 2),- 
dbeta_db = sigderiv(w'*ny+b); 
E_dbeta_db = mean(dbeta_db,2); 

dx = [],- 
dx = dalpha_db([ones(l,pRow/2)],:); 
dy = []; 
dy = dbeta_db( [ones (l,pRow/2) ],:),- 

dalpha_dw = dx.*nx,- 
E_dalpha_dw = mean(dalpha_dw,2); 
dbeta_dw = dy.*ny; 
E_dbeta_dw = mean(dbeta_dw,2) ; 

alpha_mat = [ ]; 
alpha_mat = alpha([ones(1,pRow/2) ] , :) ; 
beta_mat = [ ] ; 
beta_mat = beta([ones(l,pRow/2)],:); 
den = var(alpha,1) + var(beta,1); 
if (den < le-10) 

den = delta; 
end 
K = mean(alpha-beta,2)/den; 
dw = 2*K*(K*(mean(alpha_mat.*dalpha_dw+beta_mat.*dbeta_dw,2)... 

- E_alpha*E_dalpha_dw - E_beta*E_dbeta_dw) - E_dalpha_dw + E_dbeta_dw); 
db = 2*K*(K*(mean(alpha.*dalpha_db+beta.*dbeta_db, 2)... 

- E_alpha*E_dalpha_db - E_beta*E_dbeta_db) - E_dalpha_db + E_dbeta_db); 

% APPLY adaptive lr and stepsize 
dw = mc*dw + (1-mc) *lr*dw;. 
db = mc*db + (1-mc)*lr*db; 

return 

meansep_sp5.m 
function a = meansep_sp5(pl,p2,w,b) 

% **************************************************************************************** 
% Function 
%   CALCULATES the mean separator neural network with performance parameter defined as 
%     MD = -[E{alpha - beta}]~2*[E{(alpha - E{alpha})"2} 
% + EUbeta - E{beta})A2} + delta] Ä-l 
%   with alpha = logsigtw'*x+b), beta = logsigtw'*y+b), and delta precludes division by 
%   zero 
%    note:  if den is infinitesimally small, delta = le-10 
%   NORMALIZES basic performance parameter (Methodl) by sum of projection variances 
% 
% Use: 
% 
% Input 
% 
% 
% 

meansep_sp5(pl,p2,w,b) 

pi: 
p2: 
w: 
b: 

matrix of features for first class 
matrix of features for second class 
weight vector 
bias 
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% 
% Returns a:        mean separator performance parameter value 
% 
% 5 January 2000 
% Miguel G. San Pedro 
%**************************************************************************************** 

if nargin < 3, error('Not enough arguments.'); end 

delta = le-10; 

alpha = logsig(w'*pl + b) ; 
beta = logsig(w'*p2 + b) ; 
num = (mean(alpha - beta,2))A2; 
den = var(alpha) + var(beta); 

if (den < le-10) 
den = delta; 

end 

a = -num/den; 

return 

7.        Standard MSNN with VMR Termination (MSNN Mod 3) 

a.        trms_sp8.m 
function [wl,bl] = trms_sp5(wl,bl,p,tp,method,fig) 

% Function 
%   TRAINS the mean separator neural network with performance parameter defined as 
%     MD = -[E{20*logsig(w'*x+b)-10} - E{20*logsig(w'*y+b)-10}]"2 
% to determine weight and bias  for optimal projection 
% 
% Use:  [wl,bl] = trms_sp8(wl,bl,p,tp,method,fig) 
% 

initial weight vector (3x1) 
initial bias (lxl) 
matrix of training data for two classes 
training parameters (see below) 
mean separator variation number 
1 - standard 
2 - preconditioned input (Mod 1) 
5 - normalized projection (Mod 2) 
8 - with VMR termination (Mod 3) 
figure number 

optimized weight vector 
optimized bias 

% 
% 26 February 2000 
% Miguel G. San Pedro 
%**************************************************************************,******»*,,.„,** 
% MEAN SEPARATOR training function 
% GENERAL EQUATION 
%   MD(w,b) = -[mean(20*logsig{w'*x+b}-10) - mean{20*logsig(w'*y+b)-10}]"2 
% = -[20*mean(logsig{w'*x+b})-10 - 20*mean(logsig{w'*y+b}) + 10]"2 
% = -400[mean(logsig{W*x+b})- mean(logsig{w'*y+b})]"2 
% = -400[mean(logsig{w'*x+b} - logsig{w'*y+b})]A2 
% 
% DETERMINE gradient by 
% dMD/dw = c*dl 
% with c = -800[mean(logsig{W*x+b} - logsig{w'*y+b})] 
%     dl = mean(der_logsig{w'*x+b}*x-der_logsig{w'*y+b}*y,2) 
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% Input wl: 
•% bl: 
% P: 
% tp: 
% method 
% 
% 
% 
% 
% fig: 
% 
% Returns Wl: 
% bl: 



% tp(l) 
% tp(2) 
% tp(3) 
% tp(4) 
% tp(5) 
% tp(6) 
% tp(7) 
% 

% 
% dMD/db = c*d2 
% with d2 = mean(der_logsig{w'*x+b}-der_logsig{w'*y+b}) 
% 
% Training parameters(tp) 

epochs between updating display 
maximum number of epochs to train 
initial lerning rate 
learning rate increase 
learning rate decrease 
momentum constant 
maximum error ratio 

%**************************************************************************************** 

global gloUsrReq 
global gloUsrPlot 

format short e 
delta = le-10; 

% TRAINING PARAMETERS 
df = tp(l); 
me = tp(2) 
lr = tp(3) 
im = tp(4) 
dm = tp(5) 
mc = tp(6) 
er = tp(7) 

dwl = 0; 
dbl = 0; 
MC = 0; 
[pRow,pCol] = size(p); 

nx = zeros(pRow/2,pCol); 
ny = nx; 
nx(l:pR0W/2, :) = p (1 :pRow/2, : ) ; 
ny(l:pRow/2,:) = p(l+pRow/2:pRow,:); 

alpha = logsig(wl'*nx+bl); 
beta = logsig(wl'*ny+bl); 

E_alpha = mean(alpha,2); 
E_beta = mean(beta,2); 

a = -(E_alpha - E_beta)"2; 

% CHECK how weights and bias are changing 
%load ..\checkWB.dat 

% TRAINING 
if (gloUsrReq == 'N') 

userReq = input('Display PROJ_INDEX update message (Y/N):       ','s'); 
else 

userReq = 'N'; 
end 
if (userReq == 'Y') 

message = sprintf('TRAINMSNN: %%g/%g epochs, PROJ_INDEX = %%g.\n',me); 
fprintf(message,0,a) 
disp(['lr= ',num2str(lr)]) 

end 

ctr_repeat = 0; 
go_on = 1; 
ii = 1; 
a_save = 0; 
plot_a_save = []; 
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plot_lr_save = [ ] ; 
wl_save = rand(pRow/2,l) ,- 
bl_save = rand (1) ,- 
GOODcheck = 0; 

whi1e(go_on==1) 
% LEARNING PHASE 
[dwl,dbl] = lrms_sp8(wl,bl,p,dwl,dbl,lr,MC); 

% stepsize (alpha in steepest descent algorithm) incorporated as 
% last step in lrms_sp8 
new_wl = wl-dwl; 
new_bl = bl-dbl; 

new_alpha = logsig(new_wl'*nx+new_bl) ; 
new_beta = logsig(new_wl'*ny+new_bl); 

E_new_alpha = mean(new_alpha,2); 
E_new_beta = mean(new_beta,2); 

new_num = (E_new_alpha - E_new_beta)A2; 
new_a = -new_num; 

MC = mc; 

% PRESENTATION PHASE 
if (new_a > a/er) 

lr = lr*dm; 
MC = 0; 

else 
if (new_a < a) 

lr = lr* int- 
end 
wl = new_wl; 
bl = new_bl; 
a = new_a; 

end 
%  checkWB =[checkWB; [a wl' bl]],- 
%  checkMD = [checkMD; [num den]]; 

% TRAINING RECORD 
% PLOTTING 
plot_a(ii) = a; 
plot_lr(ii) = lr; 

% DISPLAY performance parameter 
if (userReq == 'Y') 

if (rem(ii,df) == 0) 
fprintf(message,ii,a) 
disp(['lr = ',num2str(lr)]) 

end 
end 

% CHECK improvement in performance parameter 
if (abs(a_save) < abs(a)) 

a_save = a; 
wl_save = wl; 
bl_save = bl; 
plot_a_save = plot_a; 
plot_lr_save = plot_lr; 
lr = lr/0.9; % prevents stalling training trajectory 

% CALCULATE termination parameter 
% Termination paramter:  considered with ratio of difference in Q(+-0.005) pts 
% and difference of means 
% Assume Gaussian distribution 
% 1.65 gives 5.0% in tails 
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% 1.95 gives 2.5% in tails 
% 2.52 gives 0.5% in tails 
GOOD_alpha = logsig(wl_save'*nx+bl_save); 
GOODjbeta = logsig(wl_save'*ny+bl_save); 

E_GOOD_alpha = mean(GOOD_alpha,2); 
E_GOOD_beta = mean(GOOD_beta,2); 
var_GOOD_alpha = var(GOOD_alpha,l); 
var_GOOD_beta = var(GOOD_beta,1); 

GOODcheck = 1 - 2.52*(sqrt(var_GOOD_alpha) + sqrt(var_GOOD_beta)) 
/abs(E_GOOD_alpha - E_GOOD_beta); 

end 

if ((lr < le-4)|(ii == me)|(GOODcheck > 0.90)) 
go_on = 0; 

end 
ii = ii+l; % INCREMENT epoch counter 

end 
disp(['num epochs =',num2str(ii-l)]) 
disp(['lr= ',num2str(lr)]) 
disp(['MD = ',num2str(a_save)]) 
dispU'VMR = ',num2str(GOODcheck)]) 

wl = wl_save; 
bl = bl_save; 
disp (' ') 

if (gloUsrPlot == 'Y') 
figure(fig) 
orient tall 
subplot(211) 
plot(plot_a_save) 
xlabel('time') 
ylabel('MD') 
titlet['MD vs time (Method',num2str(method),')']) 
grid on 

subplot(212) 
plot(plot_lr_save) 
xlabel('time') 
ylabel('lr') 
title(['learning rate vs time (Method',num2str(method),')']) 
grid on 

end 

%checkWB = [checkWB; 0005 ones(size(wl')) NaN]; 
%save ..\checkWB.dat checkWB -ascii -tabs 

%save checkMD.dat checkMD -ascii -tabs 

return 

lrms_sp8.m 
function [dw,db] = lrms_sp8(w,b,p,dwl,dbl,lr,mc) 

%**************************************************************************************** 

% Function 
%   Learning rate function for the mean separator neural network with performance 
%   parameter defined as 
%      MD = -[E{20*logsig(w**x+b)-10> - E{20*logsig(w'*y+b)-10}]"2 
%   to determine change in weight and bias for optimal projection 
% 
% Use:  [dw,db] = lrms_sp8(w,b,p,dwl,dbl,lr,mc) 
% 
% Input   w:        weight vector (3x1) 
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% b: 
% P = 
% dwl: 
% dbl: 
% lr: 
% mc: 
% 
% Returns dw: 
% db: 

bias (lxl) 
matrix of training data for two classes 
current change in weight 
current change in bias 
learning rate 
momentum constant 

weight vector change (3x1) 
bias change (lxl) 

% 26 February 2000 
% Miguel G. San Pedro 
%***************************************** **************************************** ******* 

[pRow,pCol] = size(p); 
nx = zeros(pRow/2,pCol); 
ny = nx; 
nx(l:pRow/2,:) = p(l:pRow/2,:) ; 
ny(l:pRow/2,:) = p(pRow/2+l:pRow,:); 

logsig_x = logsig(w'*nx+b); 
logsig_y = logsigfw'*ny+b); 
der_logsig_x = sigderivfw'*nx+b),- 
der_logsig_y = sigderiv(w'*ny+b); 

dll = [],- 
dll = der_logsig_x( [ones (l,pRow/2) ),:),- 
dl2 = []; 
dl2 = der_logsig_y([ones(l,pRow/2)] , : ) ; 
dl = mean(dll.*nx - dl2.*ny,2); 

c = -800*(mean(logsig_x,2) - mean(logsig_y,2) 
dw = c*dl; 
db = c*mean(der_logsig_x - der_logsig_y,2); 

% APPLY adaptive lr and stepsize 
dw = mc*dwl + (1-mc)*lr*dw; 
db = mc*dbl + (1-mc)*lr*db; 

return 
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